ترغب بنشر مسار تعليمي؟ اضغط هنا

A New Measurement of the Intruder Configuration in 12Be

89   0   0.0 ( 0 )
 نشر من قبل Jie Chen
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A new $^{11}$Be($d,p$)$^{12}$Be transfer reaction experiment was carried out in inverse kinematics at 26.9$A$ MeV, with special efforts devoted to the determination of the deuteron target thickness and of the required optical potentials from the present elastic scattering data. In addition, a direct measurement of the cross sections for the 0$_2^+$ state was realized by applying an isomer-tagging technique. The s-wave spectroscopic factors of 0.20(0.04) and 0.41(0.11) were extracted for the 0$_1^+$ and 0$_2^+$ states, respectively, in $^{12}$Be. Using the ratio of these spectroscopic factors, together with the previously reported results for the p-wave components, the single-particle component intensities in the bound 0$^+$ states of $^{12}$Be were deduced, allowing a direct comparison with the theoretical predictions. It is evidenced that the ground-state configuration of $^{12}$Be is dominated by the d-wave intruder, exhibiting a dramatic evolution of the intruding mechanism from $^{11}$Be to $^{12}$Be, with a persistence of the $N = 8$ magic number broken.

قيم البحث

اقرأ أيضاً

99 - S. D. Pain 2005
The breaking of the N=8 shell-model magic number in the 12Be ground state has been determined to include significant occupancy of the intruder d-wave orbital. This is in marked contrast with all other N=8 isotones, both more and less exotic than 12Be . The occupancies of the 0 hbar omega neutron p1/2-orbital and the 1 hbar omega, neutron d5/2 intruder orbital were deduced from a measurement of neutron removal from a high-energy 12Be beam leading to bound and unbound states in 11Be.
89 - A. Dijon 2012
We report on the observation of a new isomeric state in $^{68}$Ni. We suggest that the newly observed state at 168(1) keV above the first 2$^+$ state is a $pi(2p-2h)$ 0$^{+}$ state across the major Z=28 shell gap. Comparison with theoretical calculat ions indicates a pure proton intruder configuration and the deduced low-lying structure of this key nucleus suggests a possible shape coexistence scenario involving a highly deformed state.
We report a new measurement of electron antineutrino disappearance using the fully-constructed Daya Bay Reactor Neutrino Experiment. The final two of eight antineutrino detectors were installed in the summer of 2012. Including the 404 days of data co llected from October 2012 to November 2013 resulted in a total exposure of 6.9$times$10$^5$ GW$_{rm th}$-ton-days, a 3.6 times increase over our previous results. Improvements in energy calibration limited variations between detectors to 0.2%. Removal of six $^{241}$Am-$^{13}$C radioactive calibration sources reduced the background by a factor of two for the detectors in the experimental hall furthest from the reactors. Direct prediction of the antineutrino signal in the far detectors based on the measurements in the near detectors explicitly minimized the dependence of the measurement on models of reactor antineutrino emission. The uncertainties in our estimates of $sin^{2}2theta_{13}$ and $|Delta m^2_{ee}|$ were halved as a result of these improvements. Analysis of the relative antineutrino rates and energy spectra between detectors gave $sin^{2}2theta_{13} = 0.084pm0.005$ and $|Delta m^{2}_{ee}|= (2.42pm0.11) times 10^{-3}$ eV$^2$ in the three-neutrino framework.
15Be is expected to have low-lying 3/2+ and 5/2+ states. A first search did not observe the 3/2+ [A. Spyrou et al., Phys. Rev. C 84, 044309 (2011)], however, a resonance in 15Be was populated in a second attempt and determined to be unbound with resp ect to 14Be by 1.8(1) MeV with a tentative spin-parity assignment of 5/2+ [J. Snyder et al., Phys. Rev. C 88, 031303(R) (2013)]. Search for the predicted 15Be 3/2+ state in the three-neutron decay channel. A two-proton removal reaction from a 55 MeV/u 17C beam was used to populate neutron-unbound states in 15Be. The two-, three-, and four-body decay energies of the 12Be + neutron(s) detected in coincidence were reconstructed using invariant mass spectroscopy. Monte Carlo simulations were performed to extract the resonance and decay properties from the observed spectra. The low-energy regions of the decay energy spectra can be described with the first excited unbound state of 14Be (E_x=1.54 MeV, E_r=0.28 MeV). Including a state in 15Be that decays through the first excited 14Be state slightly improves the fit at higher energies though the cross section is small. A 15Be component is not needed to describe the data. If the 3/2+ state in 15Be is populated, the decay by three-neutron emission through 14Be is weak, less than or equal to 11% up to 4 MeV. In the best fit, 15Be is unbound with respect to 12Be by 1.4 MeV (unbound with respect to $14Be by 2.66 MeV) with a strength of 7%.
Neutron-unbound resonant states of 11Be were populated in neutron knock-out reactions from 12Be and identified by 10Be-n coincidence measurements. A resonance in the decay-energy spectrum at 80(2) keV was attributed to a highly excited unbound state in 11Be at 3.949(2) MeV decaying to the 2+ excited state in 10Be. A knockout cross section of 15(3) mb was inferred for this 3.949(2) MeV state suggesting a spectroscopic factor near unity for this 0p3/2- level, consistent with the detailed shell model calculations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا