ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of a new isomeric state in $^{68}$Ni: Evidence for a highly-deformed proton intruder state

130   0   0.0 ( 0 )
 نشر من قبل Aurore Dijon
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English
 تأليف A. Dijon




اسأل ChatGPT حول البحث

We report on the observation of a new isomeric state in $^{68}$Ni. We suggest that the newly observed state at 168(1) keV above the first 2$^+$ state is a $pi(2p-2h)$ 0$^{+}$ state across the major Z=28 shell gap. Comparison with theoretical calculations indicates a pure proton intruder configuration and the deduced low-lying structure of this key nucleus suggests a possible shape coexistence scenario involving a highly deformed state.



قيم البحث

اقرأ أيضاً

138 - S. Ota , S. Shimoura , H. Iwasaki 2008
The neturon rich nucleus 13B was studied via the proton transfer reaction 4He(12Be,13B gamma) at 50AMeV. The known 4.83-MeV excited state was strongly populated and its spin and parity were assigned to 1/2+ by comparing the angular differential cross section data with DWBA calculations. This low-lying 1/2+ state is interpreted as a proton intruder state and indicates a deformation of the nucleus.
The 0$^+_2$ state in $^{34}$Si has been populated at the {sc Ganil/Lise3} facility through the $beta$-decay of a newly discovered 1$^+$ isomer in $^{34}$Al of 26(1) ms half-life. The simultaneous detection of $e^+e^-$ pairs allowed the determination of the excitation energy E(0$^+_2$)=2719(3) keV and the half-life T$_{1/2}$=19.4(7) ns, from which an electric monopole strength of $rho^2$(E0)=13.0(0.9)$times10^{-3}$ was deduced. The 2$^+_1$ state is observed to decay both to the 0$^+_1$ ground state and to the newly observed 0$^+_2$ state (via a 607(2) keV transition) with a ratio R(2$^+_1$$rightarrow0^+_1/2^+_1$$rightarrow0^+_2$)=1380(717). Gathering all information, a weak mixing with the 0$^+_1$ and a large deformation parameter of $beta$=0.29(4) are found for the 0$^+_2$ state, in good agreement with shell model calculations using a new {sc sdpf-u-mix} interaction allowing textit{np-nh} excitations across the N=20 shell gap.
The nuclear structure of 67Co has been investigated through 67Fe beta-decay. The 67Fe isotopes were produced at the LISOL facility in proton-induced fission of 238U and selected using resonant laser ionization combined with mass separation. The appli cation of a new correlation technique unambiguously revealed a 496(33) ms isomeric state in 67Co at an unexpected low energy of 492 keV. A 67Co level scheme has been deduced. Proposed spin and parities suggest a spherical (7/2-) 67Co ground state and a deformed first excited (1/2-) state at 492 keV, interpreted as a proton 1p-2h prolate intruder state.
We report the independent experimental confirmation of an isomeric state in the proton drip-line nucleus $^{26}$P. The ${gamma}$-ray energy and half-life determined are 164.4 $pm$ 0.3 (sys) $pm$ 0.2 (stat) keV and 104 $pm$ 14 ns, respectively, which are in agreement with the previously reported values. These values are used to set a semi-empirical limit on the proton separation energy of $^{26}$P, with the conclusion that it can be bound or unbound.
112 - M. Salathe 2020
The excitation energy of deformed intruder states (specifically the 2p2h bandhead) as a function of proton number $Z$ along $N=20$ is of interest both in terms of better understanding the evolution of nuclear structure between spherical $^{40}$Ca and the Island of Inversion nuclei, and for benchmarking theoretical descriptions in this region. At the center of the $N=20$ Island of Inversion, the npnh (where n=2,4,6) neutron excitations across a diminished $N=20$ gap result in deformed and collective ground states, as observed in $^{32}$Mg. In heavier isotones, npnh excitations do not dominate in the ground states, but are present in the relatively low-lying level schemes. With the aim of identifying the expected 2p2h$otimesmathrm{s}_{1/2^+}$ state in $^{35}$P, the only $N=20$ isotone for which the neutron 2p2h excitation bandhead has not yet been identified, the $^{36}$S(d,$^3$He)$^{35}$P reaction has been revisited in inverse kinematics with the HELical Orbit Spectrometer (HELIOS) at the Argonne Tandem Linac Accelerator System (ATLAS). While a candidate state has not been located, an upper limit for the transfer reaction cross-section to populate such a configuration within a 2.5 to 3.6,MeV energy range, provides a stringent constraint on the wavefunction compositions in both $^{36}$S and $^{35}$P.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا