ترغب بنشر مسار تعليمي؟ اضغط هنا

Why the Shock-ICME Complex Structure is Important: Learning From the Early 2017 September CMEs

185   0   0.0 ( 0 )
 نشر من قبل Mengjiao Xu
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the early days of 2017 September, an exceptionally energetic solar active region AR12673 aroused great interest in the solar physics community. It produced four X class flares, more than 20 CMEs and an intense geomagnetic storm, for which the peak value of the Dst index reached up to -142nT at 2017 September 8 02:00 UT. In this work, we check the interplanetary and solar source of this intense geomagnetic storm. We find that this geomagnetic storm was mainly caused by a shock-ICME complex structure, which was formed by a shock driven by the 2017 September 6 CME propagating into a previous ICME which was the interplanetary counterpart of the 2017 September 4 CME. To better understand the role of this structure, we conduct the quantitative analysis about the enhancement of ICMEs geoeffectiveness induced by the shock compression. The analysis shows that the shock compression enhanced the intensity of this geomagnetic storm by a factor of two. Without shock compression, there would be only a moderate geomagnetic storm with a peak Dst value of -79 nT. In addition, the analysis of the proton flux signature inside the shock-ICME complex structure shows that this structure also enhanced the solar energetic particles (SEPs) intensity by a factor of ~ 5. These findings illustrate that the shock-ICME complex structure is a very important factor in solar physics study and space weather forecast.

قيم البحث

اقرأ أيضاً

An interval of exceptional solar activity was registered in early September 2017, late in the decay phase of solar cycle 24, involving the complex Active Region 12673 as it rotated across the western hemisphere with respect to Earth. A large number o f eruptions occurred between 4-10 September, including four associated with X-class flares. The X9.3 flare on 6 September and the X8.2 flare on 10 September are currently the two largest during cycle 24. Both were accompanied by fast coronal mass ejections and gave rise to solar energetic particle (SEP) events measured by near-Earth spacecraft. In particular, the partially-occulted solar event on 10 September triggered a ground level enhancement (GLE), the second GLE of cycle 24. A further, much less energetic SEP event was recorded on 4 September. In this work we analyze observations by the Advanced Composition Explorer (ACE) and the Geostationary Operational Environmental Satellites (GOES), estimating the SEP event-integrated spectra above 300 keV and carrying out a detailed study of the spectral shape temporal evolution. Derived spectra are characterized by a low-energy break at few/tens of MeV; the 10 September event spectrum, extending up to ~1 GeV, exhibits an additional rollover at several hundred MeV. We discuss the spectral interpretation in the scenario of shock acceleration and in terms of other important external influences related to interplanetary transport and magnetic connectivity, taking advantage of multi-point observations from the Solar Terrestrial Relations Observatory (STEREO). Spectral results are also compared with those obtained for the 17 May 2012 GLE event.
221 - G. Qin , F.-J. Kong , S.-S. Wu 2020
We present a study of the acceleration efficiency of suprathermal electrons at collisionless shock waves driven by interplanetary coronal mass ejections (ICMEs), with the data analysis from both the spacecraft observations and test-particle simulatio ns. The observations are from the 3DP/EESA instrument onboard emph{Wind} during the 74 shock events listed in Yang et al. 2019, ApJ, and the test-particle simulations are carried out through 315 cases with different shock parameters. It is shown that a large shock-normal angle, upstream Alfv$acute{text e}$n Mach number, and shock compression ratio would enhance the shock acceleration efficiency. In addition, we develop a theoretical model of the critical shock normal angle for efficient shock acceleration by assuming the shock drift acceleration to be efficient. We also obtain models for the critical values of Mach number and compression ratio with efficient shock acceleration, based on the suggestion of Drury 1983 about the average momentum change of particle crossing of shock. It is shown that the theories have similar trends of the observations and simulations. Therefore, our results suggest that the shock drift acceleration is efficient in the electron acceleration by ICME-driven shocks, which confirms the findings of Yang et al.
We report hard X-ray and gamma-ray observations of the impulsive phase of the SOL2017-09-06T11:55 X9.3 solar flare. We focus on a high-energy part of the spectrum, >100 keV, and perform time resolved spectral analysis for a portion of the impulsive p hase, recorded by the Konus-Wind experiment, that displayed prominent gamma-ray emission. Given a variety of possible emission components contributing to the gamma-ray emission, we employ a Bayesian inference to build the most probable fitting model. The analysis confidently revealed contributions from nuclear deexcitation lines, electron-positron annihilation line at 511 keV, and a neutron capture line at 2.223 MeV along with two components of the bremsstrahlung continuum. The revealed time evolution of the spectral components is particularly interesting. The low-energy bremsstrahlung continuum shows a soft-hard-soft pattern typical for impulsive flares, while the high-energy one shows a persistent hardening at the course of the flare. The neutron capture line emission shows an unusually short time delay relative to the nuclear deexcitation line component, which implies that the production of neutrons was significantly reduced soon after the event onset. This in turn may imply a prominent softening of the accelerated proton spectrum at the course of the flare, similar to the observed softening of the low-energy component of the accelerated electrons responsible for the low-energy bremsstrahlung continuum. We discuss possible physical scenarios, which might result in the obtained relationships between these gamma-ray components.
The Integrated Science Investigations of the Sun (IS$odot$IS) instrument suite includes two Energetic Particle instruments: EPI-Hi, designed to measure ions from ~1-200 MeV/nuc, and EPI-Lo, designed to measure ions from ~20 keV/nuc to ~15 MeV/nuc. We present an analysis of eight energetic proton events observed across the energy range of both instruments during PSPs first two orbits in order to examine their combined energy spectra. Background corrections are applied to help resolve spectral breaks between the two instruments and are shown to be effective. In doing so we demonstrate that, even in the early stages of calibration, IS$odot$IS is capable of producing reliable spectral observations across broad energy ranges. In addition to making groundbreaking measurements very near the Sun, IS$odot$IS also characterizes energetic particle populations over a range of heliocentric distances inside 1 au. During the first two orbits, IS$odot$IS observed energetic particle events from a single corotating interaction region (CIR) at three different distances from the Sun. The events are separated by two Carrington rotations and just 0.11 au in distance, however the relationship shown between proton intensities and proximity of the spacecraft to the source region shows evidence of the importance of transport effects on observations of energetic particles from CIRs. Future IS$odot$IS observations of similar events over larger distances will help disentangle the effects of CIR-related acceleration and transport. We apply similar spectral analyses to the remaining five events, including four that are likely related to stream interaction regions (SIRs) and one solar energetic particle (SEP) event.
The Fermi-Large Area Telescope (LAT) detection of the X8.2 GOES class solar flare of 2017 September 10 provides for the first time observations of a long duration high-energy gamma-ray flare associated with a Ground Level Enhancement (GLE). The >100 MeV emission from this flare lasted for more than 12 hours covering both the impulsive and extended phase. We present the localization of the gamma-ray emission and find that it is consistent with the active region (AR) from which the flare occurred over a period lasting more than 6 hours contrary to what was found for the 2012 March 7 flares. The temporal variation of the proton index inferred from the gamma-ray data seems to suggest two phases in acceleration of the proton population. Based on timing arguments we interpret the second phase to be tied to the acceleration mechanism powering the GLE, believed to be particle acceleration at a coronal shock driven by the CME.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا