ﻻ يوجد ملخص باللغة العربية
A central concept in the connection between physics and information theory is entropy, which represents the amount of information extracted from the system by the observer performing measurements in an experiment. Indeed, Jaynes principle of maximum entropy allows to establish the connection between entropy in statistical mechanics and information entropy. In this sense, the dissipated energy in a classical Hamiltonian process, known as the thermodynamic entropy production, is connected to the relative entropy between the forward and backward probability densities. Recently, it was revealed that energetic inefficiency and model inefficiency, defined as the difference in mutual information that the system state shares with the future and past environmental variables, are equivalent concepts in Markovian processes. As a consequence, the question about a possible connection between model unpredictability and energetic inefficiency in the framework of classical physics emerges. Here, we address this question by connecting the concepts of random behavior of a classical Hamiltonian system, the Kolmogorov-Sinai entropy, with its energetic inefficiency, the dissipated work. This approach allows us to provide meaningful interpretations of information concepts in terms of thermodynamic quantities.
We use the kinetic theory of gases to compute the Kolmogorov-Sinai entropy per particle for a dilute gas in equilibrium. For an equilibrium system, the KS entropy, h_KS is the sum of all of the positive Lyapunov exponents characterizing the chaotic b
We prove that the classical capacity of an arbitrary quantum channel assisted by a free classical feedback channel is bounded from above by the maximum average output entropy of the quantum channel. As a consequence of this bound, we conclude that a
Many modern techniques employed in physics, such a computation of path integrals, rely on random walks on graphs that can be represented as Markov chains. Traditionally, estimates of running times of such sampling algorithms are computed using the nu
Given two pairs of quantum states, a fundamental question in the resource theory of asymmetric distinguishability is to determine whether there exists a quantum channel converting one pair to the other. In this work, we reframe this question in such
The quantum entropy-typical subspace theory is specified. It is shown that any mixed state with von Neumann entropy less than h can be preserved approximately by the entropy-typical subspace with entropy= h. This result implies an universal compressi