ﻻ يوجد ملخص باللغة العربية
We have measured direct photons for $p_T<5~$GeV/$c$ in minimum bias and 0%--40% most central events at midrapidity for Cu$+$Cu collisions at $sqrt{s_{_{NN}}}=200$ GeV. The $e^{+}e^{-}$ contribution from quasi-real direct virtual photons has been determined as an excess over the known hadronic contributions in the $e^{+}e^{-}$ mass distribution. A clear enhancement of photons over the binary scaled $p$$+$$p$ fit is observed for $p_T<4$ GeV/$c$ in Cu$+$Cu data. The $p_T$ spectra are consistent with the Au$+$Au data covering a similar number of participants. The inverse slopes of the exponential fits to the excess after subtraction of the $p$$+$$p$ baseline are 285$pm$53(stat)$pm$57(syst)~MeV/$c$ and 333$pm$72(stat)$pm$45(syst)~MeV/$c$ for minimum bias and 0%--40% most central events, respectively. The rapidity density, $dN/dy$, of photons demonstrates the same power law as a function of $dN_{rm ch}/deta$ observed in Au$+$Au at the same collision energy.
The azimuthal anisotropic flow of identified and unidentified charged particles has been systematically studied in Cu+Au collisions at $sqrt{s_{_{NN}}}$ = 200 GeV for harmonics $n=$ 1-4 in the pseudorapidity range $|eta|<1$. The directed flow in Cu+A
We report new results on identified (anti)proton and charged pion spectra at large transverse momenta (3<$p_{T}$<10 GeV/c) from Cu+Cu collisions at $sqrt{s_{NN}}$=200 GeV using the STAR detector at the Relativistic Heavy Ion Collider (RHIC). This stu
We report new STAR measurements of mid-rapidity yields for the $Lambda$, $bar{Lambda}$, $K^{0}_{S}$, $Xi^{-}$, $bar{Xi}^{+}$, $Omega^{-}$, $bar{Omega}^{+}$ particles in Cu+Cu collisions at sNN{200}, and mid-rapidity yields for the $Lambda$, $bar{Lamb
We report first measurements of $e^{+}e^{-}$ pair production in the mass region 0.4 $<M_{ee}<$ 2.6 GeV/$c^{2}$ at low transverse momentum ($p_T<$ 0.15 GeV/$c$) in non-central Au$+$Au collisions at $sqrt{s_{NN}}$ = 200 GeV and U$+$U collisions at $sqr
The PHENIX experiment at RHIC has measured the centrality dependence of the direct photon yield from Au$+$Au collisions at $sqrt{s_{_{NN}}}=200$ GeV down to $p_T=0.4$ GeV/$c$. Photons are detected via photon