ﻻ يوجد ملخص باللغة العربية
Black hole (BH) shadows in dynamical binary BHs (BBHs) have been produced via ray-tracing techniques on top of expensive fully non-linear numerical relativity simulations. We show that the main features of these shadows are captured by a simple quasi-static resolution of the photon orbits on top of the static double-Schwarzschild family of solutions. Whilst the latter contains a conical singularity between the line separating the two BHs, this produces no major observable effect on the shadows, by virtue of the underlying cylindrical symmetry of the problem. This symmetry is also present in the stationary BBH solution comprising two Kerr BHs separated by a massless strut. We produce images of the shadows of the exact stationary co-rotating (even) and counter-rotating (odd) stationary BBH configurations. This allow us to assess the impact on the binary shadows of the intrinsic spin of the BHs, contrasting it with the effect of the orbital angular momentum.
In this paper, the shadows cast by non-rotating and rotating modified gravity black holes are investigated. In addition to the black hole spin parameter $a$ and the inclination angle $theta$ of observer, another parameter $alpha$ measuring the deviat
Motivated by recent work on rotating black hole shadow [Phys. Rev. D101, 084029 (2020)], we investigate the shadow behaviors of rotating Hayward-de Sitter black hole for static observers at a finite distance in terms of astronomical observables. This
This paper is dedicated to derive and study binary systems of identical corotating dyonic black holes separated by a massless strut -- two 5-parametric corotating binary black hole models endowed with both electric and magnetic charges-- where the dy
In General Relativity, the spacetimes of black holes have three fundamental properties: (i) they are the same, to lowest order in spin, as the metrics of stellar objects; (ii) they are independent of mass, when expressed in geometric units; and (iii)
Generic inspirals and mergers of binary black holes produce beamed emission of gravitational radiation that can lead to a gravitational recoil or kick of the final black hole. The kick velocity depends on the mass ratio and spins of the binary as wel