ترغب بنشر مسار تعليمي؟ اضغط هنا

Shadows of rotating Hayward-de Sitter black holes with astrometric observables

85   0   0.0 ( 0 )
 نشر من قبل Pengzhang He
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Motivated by recent work on rotating black hole shadow [Phys. Rev. D101, 084029 (2020)], we investigate the shadow behaviors of rotating Hayward-de Sitter black hole for static observers at a finite distance in terms of astronomical observables. This paper uses the newly introduced distortion parameter in [arXiv:2006.00685] to describe the shadows shape quantitatively. We show that the spin parameter would distort shadows and the magnetic monopole charge would increase the degree of deformation. At the same time, the distortion could be relieved because of the cosmological constant and the distortion would increase with the distance from the black hole. Besides, the spin parameter, magnetic monopole charge and cosmological constant increase will cause the shadow to shrink.

قيم البحث

اقرأ أيضاً

147 - Shao-Wen Wei , Yu-Xiao Liu 2021
Combining with the small-large black hole phase transition, the thermodynamic geometry has been well applied to study the microstructure for the charged AdS black hole. In this paper, we extend the geometric approach to the rotating Kerr-AdS black ho le and aim to develop a general approach for the Kerr-AdS black hole. Treating the entropy and pressure as the fluctuation coordinates, we construct the Ruppeiner geometry for the Kerr-AdS black hole by making the use of the Christodoulou-Ruffini-like squared-mass formula, which is quite different from the charged case. Employing the empirical observation of the corresponding scalar curvature, we find that, for the near-extremal Kerr-AdS black hole, the repulsive interaction dominates among its microstructure. While for far-from-extremal Kerr-AdS black hole, the attractive interaction dominates. The critical phenomenon is also observed for the scalar curvature. These results uncover the characteristic microstructure of the Kerr-AdS black hole. Such general thermodynamic geometry approach is worth generalizing to other rotating AdS black holes, and more interesting microstructure is expected to be discovered.
We investigate the thermodynamics of Gauss-Bonnet black holes in asymptotically de Sitter spacetimes embedded in an isothermal cavity, via a Euclidean action approach. We consider both charged and uncharged black holes, working in the extended phase space where the cosmological constant is treated as a thermodynamic pressure. We examine the phase structure of these black holes through their free energy. In the uncharged case, we find both Hawking-Page and small-to-large black hole phase transitions, whose character depends on the sign of the Gauss-Bonnet coupling. In the charged case, we demonstrate the presence of a swallowtube, signaling a compact region in phase space where a small-to-large black hole transition occurs.
Suppose a one-dimensional isometry group acts on a space, we can consider a submergion induced by the isometry, namely we obtain an orbit space by identification of points on the orbit of the group action. We study the causal structure of the orbit s pace for Anti-de Sitter space (AdS) explicitely. In the case of AdS$_3$, we found a variety of black hole structure, and in the case of AdS$_5$, we found a static four-dimensional black hole, and a spacetime which has two-dimensional black hole as a submanifold.
Creation of thermal distribution of particles by a black hole is independent of the detail of gravitational collapse, making the construction of the eternal horizons suffice to address the problem in asymptotically flat spacetimes. For eternal de Sit ter black holes however, earlier studies have shown the existence of both thermal and non-thermal particle creation, originating from the non-trivial causal structure of these spacetimes. Keeping this in mind we consider this problem in the context of a quasistationary gravitational collapse occurring in a $(3+1)$-dimensional eternal de Sitter, settling down to a Schwarzschild- or Kerr-de Sitter spacetime and consider a massless minimally coupled scalar field. There is a unique choice of physically meaningful `in vacuum here, defined with respect to the positive frequency cosmological Kruskal modes localised on the past cosmological horizon ${cal C^-}$, at the onset of the collapse. We define our `out vacuum at a fixed radial coordinate `close to the future cosmological horizon, ${cal C^+}$, with respect to positive frequency outgoing modes written in terms of the ordinary retarded null coordinate, $u$. We trace such modes back to ${cal C^-}$ along past directed null geodesics through the collapsing body. Some part of the wave will be reflected back without entering it due to the greybody effect. We show that these two kind of traced back modes yield the two temperature spectra and fluxes subject to the aforementioned `in vacuum. Since the coordinate $u$ used in the `out modes is not well defined on a horizon, estimate on how `close we might be to ${cal C^+}$ is given by estimating backreaction. We argue no other reasonable choice of the `out vacuum would give rise to any thermal spectra. Our conclusions remain valid for all non-Nariai class black holes, irrespective of the relative sizes of the two horizons.
129 - Peter Hintz , YuQing Xie 2021
We study the behavior of the quasinormal modes (QNMs) of massless and massive linear waves on Schwarzschild-de Sitter black holes as the black hole mass tends to 0. Via uniform estimates for a degenerating family of ODEs, we show that in bounded subs ets of the complex plane and for fixed angular momenta, the QNMs converge to those of the static model of de Sitter space. Detailed numerics illustrate our results and suggest a number of open problems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا