ﻻ يوجد ملخص باللغة العربية
The nature of the Triangulum-Andromeda (TriAnd) system has been debated since the discovery of this distant, low-latitude Milky Way (MW) overdensity more than a decade ago. Explanations for its origin are either as a halo substructure from the disruption of a dwarf galaxy or a distant extension of the Galactic disk. We test these hypotheses using chemical abundances of a dozen TriAnd members from the Sloan Digital Sky Surveys 14th Data Release of Apache Point Observatory Galactic Evolution Experiment (APOGEE) data to compare to APOGEE abundances of stars with similar metallicity from both the Sagittarius (Sgr) dSph, and the outer MW disk. We find that TriAnd stars are chemically distinct from Sgr across a variety of elements, (C+N), Mg, K, Ca, Mn, and Ni, with a separation in [X/Fe] of about 0.1 to 0.4 dex depending on the element. Instead, the TriAnd stars, with a median metallicity of about -0.8, exhibit chemical abundance ratios similar to those of the lowest metallicity ([Fe/H] ~ -0.7) stars in the outer Galactic disk, and are consistent with expectations of extrapolated chemical gradients in the outer disk of the MW. These results suggest that TriAnd is associated with the MW disk, and, therefore, that the disk extends to this overdensity --- i.e., past a Galactocentric radius of 24 kpc --- albeit vertically perturbed about 7 kpc below the nominal disk midplane in this region of the Galaxy.
The close relationship between the nature of the Triangulum-Andromeda (TriAnd) overdensity and the Galactic disk has become increasingly evident in recent years. However, the chemical pattern of this overdensity (R$_{GC}$ = 20 - 30 kpc) is unique and
We utilize elemental-abundance information for Galactic red giant stars in five open clusters (NGC 7789, NGC 6819, M67, NGC 188, and NGC 6791) from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) DR13 dataset to age-date the chemi
The Hercules stream is a group of co-moving stars in the Solar neighbourhood, which can potentially be explained as a signature of either the outer Lindblad resonance (OLR) of a fast Galactic bar or the corotation resonance of a slower bar. In either
The Andromeda Galaxy (M31) is one of a few galaxies that has sufficient angular size on the sky to be resolved by the Planck satellite. Planck has detected M31 in all of its frequency bands, and has mapped out the dust emission with the High Frequenc
Thanks to modern sky surveys, over twenty stellar streams and overdensity structures have been discovered in the halo of the Milky Way. In this paper, we present an analysis of spectroscopic observations of individual stars from one such structure, A