ترغب بنشر مسار تعليمي؟ اضغط هنا

Planck intermediate results. XXV. The Andromeda Galaxy as seen by Planck

99   0   0.0 ( 0 )
 نشر من قبل Michael Peel
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Andromeda Galaxy (M31) is one of a few galaxies that has sufficient angular size on the sky to be resolved by the Planck satellite. Planck has detected M31 in all of its frequency bands, and has mapped out the dust emission with the High Frequency Instrument, clearly resolving multiple spiral arms and sub-features. We examine the morphology of this long-wavelength dust emission as seen by Planck, including a study of its outermost spiral arms, and investigate the dust heating mechanism across M31. We find that dust dominating the longer wavelength emission ($gtrsim 0.3,$mm) is heated by the diffuse stellar population (as traced by 3.6$,mu$m emission), with the dust dominating the shorter wavelength emission heated by a mix of the old stellar population and star-forming regions (as traced by 24$,mu$m emission). We also fit spectral energy distributions (SEDs) for individual 5 pixels and quantify the dust properties across the galaxy, taking into account these different heating mechanisms, finding that there is a linear decrease in temperature with galactocentric distance for dust heated by the old stellar population, as would be expected, with temperatures ranging from around 22$,$K in the nucleus to 14$,$K outside of the 10$,$kpc ring. Finally, we measure the integrated spectrum of the whole galaxy, which we find to be well-fitted with a global dust temperature of ($18.2pm1.0$)$,$K with a spectral index of $1.62pm0.11$ (assuming a single modified blackbody), and a significant amount of free-free emission at intermediate frequencies of 20-60$,$GHz, which corresponds to a star formation rate of around $0.12$M$_odot,$yr$^{-1}$. We find a $2.3,sigma$ detection of the presence of spinning dust emission, with a 30$,$GHz amplitude of $0.7pm0.3,$Jy, which is in line with expectations from our Galaxy.


قيم البحث

اقرأ أيضاً

Shortened abstract: Observations of the nearby Chamaeleon clouds in gamma rays with the Fermi Large Area Telescope and in thermal dust emission with Planck and IRAS have been used with the HI and CO radio data to (i) map the gas column densities in t he different phases and at the dark neutral medium (DNM) transition between the HI-bright and CO-bright media; (ii) constrain the CO-to-$H_2$ conversion factor, $X_{CO}$; (iii) probe the dust properties per gas nucleon in each gas phase and spatially across the clouds. We have separated clouds in velocity in HI and CO emission and modelled the 0.4-100 GeV intensity, the dust optical depth at 353 GHz, the thermal radiance of the large grains, and an estimate of the dust extinction empirically corrected for the starlight intensity, $A_{VQ}$. The gamma-ray emissivity spectra confirm that the GeV-TeV cosmic rays uniformly permeate all gas phases up to the CO cores. The dust and cosmic rays reveal large amounts of DNM gas, with comparable spatial distributions and twice as much mass as in the CO-bright clouds. We give constraints on the HI-DNM-CO transitions and CO-dark $H_2$ fractions for separate clouds. The corrected extinction provides the best fit to the total gas traced by the gamma rays, but we find evidence for a rise in $A_{VQ}/N_H$ and a steep rise in opacity, with increasing $N_H$ and $H_2$ fraction, and with decreasing dust temperature. We observe less variations for the specific power of the grains, except for a decline by half in the CO cores. This combined information suggests grain evolution. The gamma rays and dust radiance yield consistent $X_{CO}$ estimates near $0.7times10^{20}$ cm$^{-2}$ (K km/s)$^{-1}$. The other dust tracers yield biased values because of the grain opacity rise in the CO clouds. These results also confirm a factor of 2 difference between $X_{CO}$ estimates at pc and kpc scales.
(abridged) We discuss the Galactic foreground emission between 20 and 100GHz based on observations by Planck/WMAP. The Commander component-separation tool has been used to separate the various astrophysical processes in total intensity. Comparison wi th RRL templates verifies the recovery of the free-free emission along the Galactic plane. Comparison of the high-latitude Halpha emission with our free-free map shows residuals that correlate with dust optical depth, consistent with a fraction (~30%) of Halpha having been scattered by high-latitude dust. We highlight a number of diffuse spinning dust morphological features at high latitude. There is substantial spatial variation in the spinning dust spectrum, with the emission peak ranging from below 20GHz to more than 50GHz. There is a strong tendency for the spinning dust component near many prominent HII regions to have a higher peak frequency, suggesting that this increase in peak frequency is associated with dust in the photodissociation regions around the nebulae. The emissivity of spinning dust in these diffuse regions is of the same order as previous detections in the literature. Over the entire sky, the commander solution finds more anomalous microwave emission than the WMAP component maps, at the expense of synchrotron and free-free emission. This can be explained by the difficulty in separating multiple broadband components with a limited number of frequency maps. Future surveys (5-20GHz), will greatly improve the separation by constraining the synchrotron spectrum. We combine Planck/WMAP data to make the highest S/N ratio maps yet of the intensity of the all-sky polarized synchrotron emission at frequencies above a few GHz. Most of the high-latitude polarized emission is associated with distinct large-scale loops and spurs, and we re-discuss their structure...
Using precise full-sky observations from Planck, and applying several methods of component separation, we identify and characterize the emission from the Galactic haze at microwave wavelengths. The haze is a distinct component of diffuse Galactic emi ssion, roughly centered on the Galactic centre, and extends to |b| ~35 deg in Galactic latitude and |l| ~15 deg in longitude. By combining the Planck data with observations from the WMAP we are able to determine the spectrum of this emission to high accuracy, unhindered by the large systematic biases present in previous analyses. The derived spectrum is consistent with power-law emission with a spectral index of -2.55 +/- 0.05, thus excluding free-free emission as the source and instead favouring hard-spectrum synchrotron radiation from an electron population with a spectrum (number density per energy) dN/dE ~ E^-2.1. At Galactic latitudes |b|<30 deg, the microwave haze morphology is consistent with that of the Fermi gamma-ray haze or bubbles, indicating that we have a multi-wavelength view of a distinct component of our Galaxy. Given both the very hard spectrum and the extended nature of the emission, it is highly unlikely that the haze electrons result from supernova shocks in the Galactic disk. Instead, a new mechanism for cosmic-ray acceleration in the centre of our Galaxy is implied.
The Planck mission, thanks to its large frequency range and all-sky coverage, has a unique potential for systematically detecting the brightest, and rarest, submillimetre sources on the sky, including distant objects in the high-redshift Universe tra ced by their dust emission. A novel method, based on a component-separation procedure using a combination of Planck and IRAS data, has been applied to select the most luminous cold submm sources with spectral energy distributions peaking between 353 and 857GHz at 5 resolution. A total of 2151 Planck high-z source candidates (the PHZ) have been detected in the cleanest 26% of the sky, with flux density at 545GHz above 500mJy. Embedded in the cosmic infrared background close to the confusion limit, these high-z candidates exhibit colder colours than their surroundings, consistent with redshifts z>2, assuming a dust temperature of 35K and a spectral index of 1.5. First follow-up observations obtained from optical to submm have confirmed that this list consists of two distinct populations. A small fraction (around 3%) of the sources have been identified as strongly gravitationally lensed star-forming galaxies, which are amongst the brightest submm lensed objects (with flux density at 545GHz ranging from 350mJy up to 1Jy) at redshift 2 to 4. However, the vast majority of the PHZ sources appear as overdensities of dusty star-forming galaxies, having colours consistent with z>2, and may be considered as proto-cluster candidates. The PHZ provides an original sample, complementary to the Planck Sunyaev-Zeldovich Catalogue; by extending the population of the virialized massive galaxy clusters to a population of sources at z>1.5, the PHZ may contain the progenitors of todays clusters. Hence the PHZ opens a new window on the study of the early ages of structure formation, and the understanding of the intensively star-forming phase at high-z.
[Abridged] We use the Planck all-sky submm and mm maps to search for rare sources distinguished by extreme brightness, a few hundreds of mJy, and their potential for being situated at high redshift. These cold Planck sources, selected using the High Frequency Instrument (HFI) directly from the maps and from the Planck Catalogue of Compact Sources (PCCS), all satisfy the criterion of having their rest-frame far-infrared peak redshifted to the frequency range 353 and 857 GHz. This colour-selection favours galaxies in the redshift range z=2-4, which we consider as cold peaks in the cosmic infrared background (CIB). We perform a dedicated Herschel-SPIRE follow-up of 234 such Planck targets, finding a significant excess of red 350 and 500um sources, in comparison to reference SPIRE fields. About 94% of the SPIRE sources in the Planck fields are consistent with being overdensities of galaxies peaking at 350um. About 3% are candidate lensed systems, all 12 of which have secure spectroscopic confirmations, placing them at redshifts z>2.2. The galaxy overdensities are detected with high significance, half of the sample showing statistical significance above 10sigma. The SPIRE photometric redshifts of galaxies in overdensities suggest a peak at z~2. Under the Td=35K assumption, we derive an infrared (IR) luminosity for each SPIRE source of about 4x10^12 Lsun, yielding star formation rates of typically 700 Msun.yr^-1. If the observed overdensities are actual gravitationally-bound structures, the total total star formation rates reaches 7x10^3 Msun.yr^-1. Taken together, these sources show the signatures of high-z (z>$) protoclusters of intensively star-forming galaxies. All these observations confirm the uniqueness of our sample and demonstrate the ability of the all-sky Planck-HFI cold sources to select populations of cosmological and astrophysical interest for structure formation studies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا