ﻻ يوجد ملخص باللغة العربية
In scalar turbulence it is sometimes the case that the scalar diffusivity is smaller than the viscous diffusivity. The thermally-driven turbulent convection in water is a typical example. In such a case the smallest scale in the problem is the Batchelor scale $l_b$, rather than the Kolmogorov scale $l_k$, as $l_b = l_k/Sc^{1/2}$, where Sc is the Schmidt number (or Prandtl number in the case of temperature). In the numerical studies of such scalar turbulence, the conventional approach is to use a single grid for both the velocity and scalar fields. Such single-resolution scheme often over-resolves the velocity field because the resolution requirement for scalar is higher than that for the velocity field, since $l_b<l_k$ for $Sc>1$. In this paper we put forward an algorithm that implements the so-called multiple-resolution method with a finite-volume code. In this scheme, the velocity and pressure fields are solved in a coarse grid, while the scalar field is solved in a dense grid. The central idea is to implement the interpolation scheme on the framework of finite-volume to reconstruct the divergence-free velocity from the coarse to the dense grid. We demonstrate our method using a canonical model system of fluid turbulence, the Rayleigh-Benard convection. We show that, with the tailored mesh design, considerable speed-up for simulating scalar turbulence can be achieved, especially for large Schmidt (Prandtl) numbers. In the same time, sufficient accuracy of the scalar and velocity fields can be achived by this multiple-resolution scheme. Although our algorithm is demonstrated with a case of an active scalar, it can be readily applied to passive scalar turbulent flows.
The advection and mixing of a scalar quantity by fluid flow is an important problem in engineering and natural sciences. If the fluid is turbulent, the statistics of the passive scalar exhibit complex behavior. This paper is concerned with two Lagran
The reduction of dimensionality of physical systems, specially in fluid dynamics, leads in many situations to nonlinear ordinary differential equations which have global invariant manifolds with algebraic expressions containing relevant physical info
We propose the rhoLENT method, an extension of the unstructured Level Set / Front Tracking (LENT) method, based on the collocated Finite Volume equation discretization, that recovers exact numerical stability for the two-phase momentum convection wit
The performance of interFoam (a widely used solver within OpenFOAM package) in simulating the propagation of water waves has been reported to be sensitive to the temporal and spatial resolution. To facilitate more accurate simulations, a numerical wa
We use direct numerical simulations to compute turbulent transport coefficients for passive scalars in turbulent rotating flows. Effective diffusion coefficients in the directions parallel and perpendicular to the rotations axis are obtained by study