ترغب بنشر مسار تعليمي؟ اضغط هنا

High-fidelity simulation of regular waves based on multi-moment finite volume formulation and THINC method

122   0   0.0 ( 0 )
 نشر من قبل Zhihang Zhang
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The performance of interFoam (a widely used solver within OpenFOAM package) in simulating the propagation of water waves has been reported to be sensitive to the temporal and spatial resolution. To facilitate more accurate simulations, a numerical wave tank is built based on a high-order accurate Navier-Stokes model, which employs the VPM (volume-average/point-value multi-moment) scheme as the fluid solver and the THINC/QQ method (THINC method with quadratic surface representation and Gaussian quadrature) for the free-surface capturing. Simulations of regular waves in an intermediate water depth are conducted and the results are assessed via comparing with the analytical solutions. The performance of the present model and interFoam solver in simulating the wave propagation is systematically compared in this work. The results clearly demonstrate that compared with interFoam solver, the present model significantly improves the dissipation properties of the propagating wave, where the waveforms as well as the velocity distribution can be substantially maintained while the waves propagating over long distances even with large time steps and coarse grids. It is also shown that the present model requires much less computation time to reach a given error level in comparison with interFoam solver.



قيم البحث

اقرأ أيضاً

In this numerical study, an original approach to simulate non-isothermal viscoelastic fluid flows at high Weissenberg numbers is presented. Stable computations over a wide range of Weissenberg numbers are assured by using the root conformation approa ch in a finite volume framework on general unstructured meshes. The numerical stabilization framework is extended to consider thermo-rheological properties in Oldroyd-B type viscoelastic fluids. The temperature dependence of the viscoelastic fluid is modeled with the time-temperature superposition principle. Both Arrhenius and WLF shift factors can be chosen, depending on the flow characteristics. The internal energy balance takes into account both energy and entropy elasticity. Partitioning is achieved by a constant split factor. An analytical solution of the balance equations in planar channel flow is derived to verify the results of the main field variables and to estimate the numerical error. The more complex entry flow of a polyisobutylene-based polymer solution in an axisymmetric 4:1 contraction is studied and compared to experimental data from the literature. We demonstrate the stability of the method in the experimentally relevant range of high Weissenberg numbers. The results at different imposed wall temperatures, as well as Weissenberg numbers, are found to be in good agreement with experimental data. Furthermore, the division between energy and entropy elasticity is investigated in detail with regard to the experimental setup.
Simulating inhomogeneous flows with different characteristic scales in different coordinate directions using the collide-and-stream based lattice Boltzmann methods (LBM) can be accomplished efficiently using rectangular lattice grids. We develop and investigate a new rectangular central moment LBM based on non-orthogonal moment basis (referred to as RC-LBM). The equilibria to which the central moments relax under collision in this approach are obtained from matching with those corresponding to the continuous Maxwell distribution. A Chapman-Enskog analysis is performed to derive the correction terms to the second order moment equilibria involving the grid aspect ratio and velocity gradients that restores the isotropy of the viscous stress tensor and eliminates the non-Galilean invariant cubic velocity terms of the resulting hydrodynamical equations. A special case of this rectangular formulation involving the raw moments (referred to as the RNR-LBM) is also constructed. The resulting schemes represent a considerable simplification, especially for the transformation matrices and isotropy corrections, and improvement over the existing MRT-LB schemes on rectangular lattice grids that use orthogonal moment basis. Numerical validation study of both the RC-LBM and RNR-LBM for a variety of benchmark flow problems are performed that show good accuracy at various grid aspect ratios. The ability of our proposed schemes to simulate flows using relatively lower grid aspect ratios than considered in prior rectangular LB approaches is demonstrated. Furthermore, simulations reveal the superior stability characteristics of the RC-LBM over RNR-LBM in handling shear flows at lower viscosities and/or higher characteristic velocities. In addition, computational advantages of using our rectangular LB formulation in lieu of that based on the square lattice is shown.
We propose the rhoLENT method, an extension of the unstructured Level Set / Front Tracking (LENT) method, based on the collocated Finite Volume equation discretization, that recovers exact numerical stability for the two-phase momentum convection wit h a range of density ratios, namely $rho^-/rho^+in [1, 10000]$. We provide the theoretical basis for the numerical inconsistency in the collocated finite volume equation discretization of the single-field two-phase momentum convection. The cause of the numerical inconsistency lies in the way the cell-centered density is computed in the new time step ($rho_c^{n+1}$). Specifically, if $rho_c^{n+1}$ is computed from the approximation of the fluid interface at $t^{n+1}$, and it is not computed by solving a mass conservation equation (or its equivalent), the two-phase momentum convection term will automatically be inconsistently discretized. We provide the theoretical justification behind using the auxiliary mass conservation equation to stabilize flows with strong density ratios. The evaluation of the face-centered (mass flux) density we base on the fundamental principle of mass conservation, used to model the single-field density, contrary to the use of different weighted averages of cell-centered single-field densities and alternative reconstructions of the mass flux density by other contemporary methods. Implicit discretization of the two-phase momentum convection term is achieved, removing the CFL stability criterion. Numerical stability is demonstrated in terms of the relative $L_infty$ velocity error norm with realistic viscosity and strong surface tension forces. The stabilization technique in the rhoLENT method is also applicable to other two-phase flow simulation methods that utilize the collocated unstructured Finite Volume Method to discretize single-field two-phase Navier-Stokes Equations.
392 - Zhenning Cai 2020
We survey a number of moment hierarchies and test their performances in computing one-dimensional shock structures. It is found that for high Mach numbers, the moment hierarchies are either computationally expensive or hard to converge, making these methods questionable for the simulation of highly non-equilibrium flows. By examining the convergence issue of Grads moment methods, we propose a new moment hierarchy to bridge the hydrodynamic models and the kinetic equation, allowing nonlinear moment methods to be used as a numerical tool to discretize the velocity space for high-speed flows. For the case of one-dimensional velocity, the method is formulated for odd number of moments, and it can be extended seamlessly to the three-dimensional case. Numerical tests show that the method is capable of predicting shock structures with high Mach numbers accurately, and the results converge to the solution of the Boltzmann equation as the number of moments increases. Some applications beyond the shock structure problem are also considered, indicating that the proposed method is suitable for the computation of transitional flows.
This work presents a new multiphase SPH model that includes the shifting algorithm and a variable smoothing length formalism to simulate multi-phase flows with accuracy and proper interphase management. The implementation was performed in the DualSPH ysics code and validated for different canonical experiments, such as the single-phase and multiphase Poiseuille and Couette test cases. The method is accurate even for the multiphase case for which two phases are simulated. The shifting algorithm and the variable smoothing length formalism has been applied in the multiphase SPH model to improve the numerical results at the interphase even when it is highly deformed and non-linear effects become important. The obtained accuracy in the validation tests and the good interphase definition in the instability cases indicate an important improvement in the numerical results compared with single-phase and multiphase models where the shifting algorithm and the variable smoothing length formalism are not applied.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا