ﻻ يوجد ملخص باللغة العربية
Observation of neutrinoless double beta decay, a lepton number violating process that has been proposed to clarify the nature of neutrino masses, has spawned an enormous world-wide experimental effort. Relating nuclear decay rates to high-energy, beyond the Standard Model (BSM) physics requires detailed knowledge of non-perturbative QCD effects. Using lattice QCD, we compute the necessary matrix elements of short-range operators, which arise due to heavy BSM mediators, that contribute to this decay via the leading order $pi^- to pi^+$ exchange diagrams. Utilizing our result and taking advantage of effective field theory methods will allow for model-independent calculations of the relevant two-nucleon decay, which may then be used as input for nuclear many-body calculations of the relevant experimental decays. Contributions from short-range operators may prove to be equally important to, or even more important than, those from long-range Majorana neutrino exchange.
We present the first ab initio calculations of neutrinoless double beta decay matrix elements in $A=6$-$12$ nuclei using Variational Monte Carlo wave functions obtained from the Argonne $v_{18}$ two-nucleon potential and Illinois-7 three-nucleon inte
Second order beta-decay processes with and without neutrinos in the final state are key probes of nuclear physics and of the nature of neutrinos. Neutrinoful double-beta decay is the rarest Standard Model process that has been observed and provides a
We present a method to determine the leading-order (LO) contact term contributing to the $nn to pp e^-e^-$ amplitude through the exchange of light Majorana neutrinos. Our approach is based on the representation of the amplitude as the momentum integr
The process at the heart of neutrinoless double-beta decay, $nn rightarrow p p, e^- e^-$ induced by a light Majorana neutrino, is investigated in pionless and chiral effective field theory. We show in various regularization schemes the need to introd
Neutrinoless double beta decay is a hypothetical radioactive process which, if observed, would prove the neutrino to be a Majorana fermion: a particle that is its own antiparticle. In this lecture mini-series I discuss the physics of Majorana fermion