ترغب بنشر مسار تعليمي؟ اضغط هنا

Understanding doped perovskite ferroelectrics with defective dipole model

109   0   0.0 ( 0 )
 نشر من قبل Dawei Wang
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

While doping is widely used for tuning physical properties of perovskites in experiments, it remains a challenge to exactly know how doping achieves the desired effects. Here, we propose an empirical and computationally tractable model to understand the effects of doping with Fe-doped BaTiO$_{3}$ as an example. This model assumes that the lattice sites occupied by Fe ion and its nearest six neighbors lose their ability to polarize, giving rise to a small cluster of defective dipoles. Employing this model in Monte-Carlo simulations, many important features like reduced polarization and the convergence of phase transition temperatures, which have been observed experimentally in acceptor doped systems, are successfully obtained. Based on microscopic information of dipole configurations, we provide insights into the driving forces behind doping effects and propose that active dipoles, which exist in proximity to the defective dipoles, can account for experimentally observed phenomena. Close attention to these dipoles are necessary to understand and predict doping effects.



قيم البحث

اقرأ أيضاً

257 - J. Liu , L. Liu , J. Zhang 2019
Doping is a widely used method to tune physical properties of ferroelectric perovskites. Since doping can induce charges due to the substitution of certain elements, charge effects shall be considered in doped samples. To understand how charges can a ffect the system, we incorporate the dipole-charge interaction into our simulations, where the pinched hysteresis loops can well be reproduced. Two charge compensation models are proposed and numerically investigated to understand how lanthanum doping affect BaTiO$_{3}$s ferroelectric phase transition temperature and hysteresis loop. The consequences of the two charge compensation models are compared and discussed.
We propose a model of magneto-electric effect in doped magnetic ferroelectrics. This magneto-electric effect does not involve the spin-orbit coupling and is based purely on the Coulomb interaction. We calculate magnetic phase diagram of doped magneti c ferroelectrics. We show that magneto-electric coupling is pronounced only for ferroelectrics with low dielectric constant. We find that magneto-electric coupling leads to modification of magnetization temperature dependence in the vicinity of ferroelectric phase transition. A peak of magnetization appears. We find that magnetization of doped magnetic ferroelectrics strongly depends on applied electric field.
Dabconium hybrid perovskites include a number of recently-discovered ferroelectric phases with large spontaneous polarisations. The origin of ferroelectric response has been rationalised in general terms in the context of hydrogen bonding, covalency, and strain coupling. Here we use a combination of simple theory, Monte Carlo simulations, and density functional theory calculations to assess the ability of these microscopic ingredients---together with the always-present through-space dipolar coupling---to account for the emergence of polarisation in these particular systems whilst not in other hybrid perovskites. Our key result is that the combination of A-site polarity, preferred orientation along $langle111rangle$ directions, and ferroelastic strain coupling drives precisely the ferroelectric transition observed experimentally. We rationalise the absence of polarisation in many hybrid perovskites, and arrive at a set of design rules for generating FE examples beyond the dabconium family alone.
Halide perovskites excel in the pursuit of highly efficient thin film photovoltaics, with power conversion efficiencies reaching 25.5% in single junction and 29.5% in tandem halide perovskite/silicon solar cell configurations. Operational stability o f perovskite solar cells remains a barrier to their commercialisation, yet a fundamental understanding of degradation processes, including the specific sites at which failure mechanisms occur, is lacking. Recently, we reported that performance-limiting deep sub-bandgap states appear in nanoscale clusters at particular grain boundaries in state-of-the-art $Cs_{0.05}FA_{0.78}MA_{0.17}Pb(I_{0.83}Br_{0.17})_{3}$ (MA=methylammonium, FA=formamidinium) perovskite films. Here, we combine multimodal microscopy to show that these very nanoscale defect clusters, which go otherwise undetected with bulk measurements, are sites at which degradation seeds. We use photoemission electron microscopy to visualise trap clusters and observe that these specific sites grow in defect density over time under illumination, leading to local reductions in performance parameters. Scanning electron diffraction measurements reveal concomitant structural changes at phase impurities associated with trap clusters, with rapid conversion to metallic lead through iodine depletion, eventually resulting in pinhole formation. By contrast, illumination in the presence of oxygen reduces defect densities and reverses performance degradation at these local clusters, where phase impurities instead convert to amorphous and electronically benign lead oxide. Our work shows that the trapping of charge carriers at sites associated with phase impurities, itself reducing performance, catalyses redox reactions that compromise device longevity. Importantly, we reveal that both performance losses and intrinsic degradation can be mitigated by eliminating these defective clusters.
Typical ferroelectrics possess a large spontaneous polarization Ps but simultaneously a large remnant polarization Pr as well, resulting in an inferior energy storage density.A mechanism that can reduce the Pr while maintain the Ps is demanded to enh ance the energy storage property of ferroelectrics.In the present study, it is shown that after acceptor doping and aging treatment, the domain switching in ferroelectrics becomes reversible, giving rise to a pinched double hysteresis loop. The pinched loop with a large Ps and a small Pr thus results in an enhanced energy storage density. The physics behind is a defect induced internal field that provides a restoring force for the domains to switch back.The idea is demonstrated through a time-dependent Ginzburg-Landau simulation as well as experimental measurements in BaTiO$_3$ based single crystal and ceramics. The mechanism is general and can be applied to various ferroelectrics, especially the environment-friendly ones.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا