ﻻ يوجد ملخص باللغة العربية
Dabconium hybrid perovskites include a number of recently-discovered ferroelectric phases with large spontaneous polarisations. The origin of ferroelectric response has been rationalised in general terms in the context of hydrogen bonding, covalency, and strain coupling. Here we use a combination of simple theory, Monte Carlo simulations, and density functional theory calculations to assess the ability of these microscopic ingredients---together with the always-present through-space dipolar coupling---to account for the emergence of polarisation in these particular systems whilst not in other hybrid perovskites. Our key result is that the combination of A-site polarity, preferred orientation along $langle111rangle$ directions, and ferroelastic strain coupling drives precisely the ferroelectric transition observed experimentally. We rationalise the absence of polarisation in many hybrid perovskites, and arrive at a set of design rules for generating FE examples beyond the dabconium family alone.
Using classical Monte Carlo simulations, we study a simple statistical mechanical model of relevance to the emergence of polarisation from local displacements on the square and cubic lattices. Our model contains two key ingredients: a Kitaev-like ori
Our detailed temperature dependent synchrotron powder x-ray diffraction studies along with first-principles density functional perturbation theory calculations, enable us to shed light on the origin of ferroelectricity in GdCrO3. The actual lattice s
Doping is a widely used method to tune physical properties of ferroelectric perovskites. Since doping can induce charges due to the substitution of certain elements, charge effects shall be considered in doped samples. To understand how charges can a
We show that compounds in a family that possess time-reversal symmetry and share a non-centrosymmetric cubic structure with the space group F-43m (No. 216) host robust ideal Weyl semi-metal fermions with desirable topologically protected features. Th
While doping is widely used for tuning physical properties of perovskites in experiments, it remains a challenge to exactly know how doping achieves the desired effects. Here, we propose an empirical and computationally tractable model to understand