ﻻ يوجد ملخص باللغة العربية
Spin-charge interconversion (SCI) phenomena have attracted a growing interest in the field of spintronics as means to detect spin currents or manipulate the magnetization of ferromagnets. The key ingredients to exploit these assets are a large conversion efficiency, the scalability down to the nanometer scale and the integrability with opto-electronic and spintronic devices. Here we show that, when an ultrathin Bi film is epitaxially grown on top of a Ge(111) substrate, quantum size effects arising in nanometric Bi islands drastically boost the SCI efficiency, even at room temperature. Using x-ray diffraction (XRD), scanning tunneling microscopy (STM) and spin- and angle-resolved photoemission (S-ARPES) we obtain a clear picture of the film morphology, crystallography and electronic structure. We then exploit the Rashba-Edelstein effect (REE) and inverse Rashba-Edelstein effect (IREE) to directly quantify the SCI efficiency using optical and electrical spin injection.
We report spin-to-charge and charge-to-spin conversion at room temperature in heterostructure devices that interface an archetypal Dirac semimetal, Cd3As2, with a metallic ferromagnet, Ni0.80Fe0.20 (permalloy). The spin-charge interconversion is dete
Quantum oxide materials possess a vast range of properties stemming from the interplay between the lattice, charge, spin and orbital degrees of freedom, in which electron correlations often play an important role. Historically, the spin-orbit couplin
Spin excitations of magnetic thin films are the founding element for novel transport concepts in spintronics, magnonics, and magnetic devices in general. While spin dynamics have been extensively studied in bulk materials, their behaviour in mesoscop
The presence of inherently strong spin-orbit coupling in bismuth, its unique layer-dependent band topology and high carrier mobility make it an interesting system for both fundamental studies and applications. Theoretically, it has been suggested tha
A combined approach using first-principles calculations and spin dynamics simulations is applied to study Ni/Ir$_{n}$/Pt(111) ($n=0,1,2$) films. The lowest-energy states are predicted to be almost degenerate with negligble energy differences between