ترغب بنشر مسار تعليمي؟ اضغط هنا

Pulse shape analysis of neutron signals in Si-based detectors

64   0   0.0 ( 0 )
 نشر من قبل Giacomo Mauri
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A series of test experiments on three different Si-based neutron detectors, namely a 1-d 128 channel, 0.5 mm space resolution Si microstrip sensor coupled to natural Gd converter, a medium size ? 1 cm2 PIN diode coupled to nGd2O3 or 157Gd2O3 converters, and a SiPM photomultiplier coupled to neutron scintillators, are presented to show the performances of this class of devices for thermal neutron detection. A pulse shape analysis method, designed to improve the performance of these devices by an optimized discrimination of the neutron signals from noise and background radiation, is proposed, described and tested. This study is aimed to real time applications and single event storage of the neutron information in time of flight instrumentation.



قيم البحث

اقرأ أيضاً

119 - F. C. E. Teh , J. -W. Lee , K. Zhu 2020
Using the waveforms from a digital electronic system, an offline analysis technique on pulse shape discrimination (PSD) has been developed to improve the neutron-gamma separation in a bar-shaped NE-213 scintillator that couples to a photomultiplier t ube (PMT) at each end. The new improved method, called the ``valued-assigned PSD (VPSD), assigns a normalized fitting residual to every waveform as the PSD value. This procedure then facilitates the incorporation of longitudinal position dependence of the scintillator, which further enhances the PSD capability of the detector system. In this paper, we use radiation emitted from an AmBe neutron source to demonstrate that the resulting neutron-gamma identification has been much improved when compared to the traditional technique that uses the geometric mean of light outputs from both PMTs. The new method has also been modified and applied to a recent experiment at the National Superconducting Cyclotron Laboratory (NSCL) that uses an analog electronic system.
Experiments searching for rare processes like neutrinoless double beta decay heavily rely on the identification of background events to reduce their background level and increase their sensitivity. We present a novel machine learning based method to recognize one of the most abundant classes of background events in these experiments. By combining a neural network for feature extraction with a smaller classification network, our method can be trained with only a small number of labeled events. To validate our method, we use signals from a broad-energy germanium detector irradiated with a $^{228}$Th gamma source. We find that it matches the performance of state-of-the-art algorithms commonly used for this detector type. However, it requires less tuning and calibration and shows potential to identify certain types of background events missed by other methods.
We report on the characterization of two inverted coaxial Ge detectors in the context of being employed in future $^{76}$Ge neutrinoless double beta ($0 ubetabeta$) decay experiments. It is an advantage that such detectors can be produced with bigger Ge mass as compared to the planar Broad Energy Ge detectors (BEGe) that are currently used in the GERDA $0 ubetabeta$ decay experiment. This will result in lower background for the search of $0 ubetabeta$ decay due to a reduction of cables, electronics and holders. The measured resolution near the $^{76}$Ge Q-value at 2039 keV is 2.5 keV and their pulse-shape characteristics are similar to BEGe-detectors. It is concluded that this type of Ge-detector is suitable for usage in $^{76}$Ge $0 ubetabeta$ decay experiments.
69 - Y. Ashida , H. Nagata , Y. Koshio 2018
Fast neutrons are a large background to measurements of gamma-rays emitted from excited nuclei, such that detectors which can efficiently distinguish between the two are essential. In this paper we describe the separation of gamma-rays from neutrons with the pulse shape information of the CsI(Tl) scintillator, using a fast neutron beam and several gamma-ray sources. We find that a figure of merit optimized for this separation takes on large and stable values (nearly 4) between 5 and 10 MeV of electron equivalent deposited energy, the region of most interest to the study of nuclear de-excitation gamma-rays. Accordingly this work demonstrates the ability of CsI(Tl) scintillators to reject neutron backgrounds to gamma-ray measurements at these energies.
156 - I. Abt , A. Caldwell , D. Lenz 2010
A new package to simulate the formation of electrical pulses in segmented true-coaxial high purity germanium detectors is presented. The computation of the electric field and weighting potentials inside the detector as well as of the trajectories of the charge carriers is described. In addition, the treatment of bandwidth limitations and noise are discussed. Comparison of simulated to measured pulses, obtained from an 18-fold segmented detector operated inside a cryogenic test facility, are presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا