ترغب بنشر مسار تعليمي؟ اضغط هنا

Pulse shape simulation for segmented true-coaxial HPGe detectors

163   0   0.0 ( 0 )
 نشر من قبل Iris Abt
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A new package to simulate the formation of electrical pulses in segmented true-coaxial high purity germanium detectors is presented. The computation of the electric field and weighting potentials inside the detector as well as of the trajectories of the charge carriers is described. In addition, the treatment of bandwidth limitations and noise are discussed. Comparison of simulated to measured pulses, obtained from an 18-fold segmented detector operated inside a cryogenic test facility, are presented.



قيم البحث

اقرأ أيضاً

183 - I. Abt , A. Caldwell , J. Liu 2011
A fast method to determine the crystallographic axes of segmented true-coaxial high-purity germanium detectors is presented. It is based on the analysis of segment-occupancy patterns obtained by irradiation with radioactive sources. The measured patt erns are compared to predictions for different axes orientations. The predictions require a simulation of the trajectories of the charge carriers taking the transverse anisotropy of their drift into account.
We report on the characterization of two inverted coaxial Ge detectors in the context of being employed in future $^{76}$Ge neutrinoless double beta ($0 ubetabeta$) decay experiments. It is an advantage that such detectors can be produced with bigger Ge mass as compared to the planar Broad Energy Ge detectors (BEGe) that are currently used in the GERDA $0 ubetabeta$ decay experiment. This will result in lower background for the search of $0 ubetabeta$ decay due to a reduction of cables, electronics and holders. The measured resolution near the $^{76}$Ge Q-value at 2039 keV is 2.5 keV and their pulse-shape characteristics are similar to BEGe-detectors. It is concluded that this type of Ge-detector is suitable for usage in $^{76}$Ge $0 ubetabeta$ decay experiments.
P-type point contact (PPC) HPGe detectors are a leading technology for rare event searches due to their excellent energy resolution, low thresholds, and multi-site event rejection capabilities. We have characterized a PPC detectors response to $alpha $ particles incident on the sensitive passivated and p+ surfaces, a previously poorly-understood source of background. The detector studied is identical to those in the MAJORANA DEMONSTRATOR experiment, a search for neutrinoless double-beta decay ($0 ubetabeta$) in $^{76}$Ge. $alpha$ decays on most of the passivated surface exhibit significant energy loss due to charge trapping, with waveforms exhibiting a delayed charge recovery (DCR) signature caused by the slow collection of a fraction of the trapped charge. The DCR is found to be complementary to existing methods of $alpha$ identification, reliably identifying $alpha$ background events on the passivated surface of the detector. We demonstrate effective rejection of all surface $alpha$ events (to within statistical uncertainty) with a loss of only 0.2% of bulk events by combining the DCR discriminator with previously-used methods. The DCR discriminator has been used to reduce the background rate in the $0 ubetabeta$ region of interest window by an order of magnitude in the MAJORANA DEMONSTRATOR, and will be used in the upcoming LEGEND-200 experiment.
Experiments searching for rare processes like neutrinoless double beta decay heavily rely on the identification of background events to reduce their background level and increase their sensitivity. We present a novel machine learning based method to recognize one of the most abundant classes of background events in these experiments. By combining a neural network for feature extraction with a smaller classification network, our method can be trained with only a small number of labeled events. To validate our method, we use signals from a broad-energy germanium detector irradiated with a $^{228}$Th gamma source. We find that it matches the performance of state-of-the-art algorithms commonly used for this detector type. However, it requires less tuning and calibration and shows potential to identify certain types of background events missed by other methods.
Searches for new physics push experiments to look for increasingly rare interactions. As a result, detectors require increasing sensitivity and specificity, and materials must be screened for naturally occurring, background-producing radioactivity. F urthermore the detectors used for screening must approach the sensitivities of the physics-search detectors themselves, thus motivating iterative development of detectors capable of both physics searches and background screening. We report on the design, installation, and performance of a novel, low-background, fourteen-element high-purity germanium detector named the CAGe (CUP Array of Germanium), installed at the Yangyang underground laboratory in Korea.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا