ﻻ يوجد ملخص باللغة العربية
Given a physical device as a black box, one can in principle fully reconstruct its input-output transfer function by repeatedly feeding different input probes through the device and performing different measurements on the corresponding outputs. However, for such a complete tomographic reconstruction to work, full knowledge of both input probes and output measurements is required. Such an assumption is not only experimentally demanding, but also logically questionable, as it produces a circular argument in which the characterization of unknown devices appears to require other devices to have been already characterized beforehand. Here, we introduce a method to overcome such limitations present in usual tomographic techniques. We show that, even without any knowledge about the tomographic apparatus, it is still possible to infer the unknown device to a high degree of precision, solely relying on the observed data. This is achieved by employing a criterion that singles out the minimal explanation compatible with the observed data. Our method, that can be seen as a data-driven analogue of tomography, is solved analytically and implemented as an algorithm for the learning of qubit channels.
Data-driven inference was recently introduced as a protocol that, upon the input of a set of data, outputs a mathematical description for a physical device able to explain the data. The device so inferred is automatically self-consistent, that is, ca
The range of a quantum measurement is the set of outcome probability distributions that can be produced by varying the input state. We introduce data-driven inference as a protocol that, given a set of experimental data as a collection of outcome dis
We present a model-free data-driven inference method that enables inferences on system outcomes to be derived directly from empirical data without the need for intervening modeling of any type, be it modeling of a material law or modeling of a prior
Programmers often leverage data structure libraries that provide useful and reusable abstractions. Modular verification of programs that make use of these libraries naturally rely on specifications that capture important properties about how the libr
We prove that any two general probabilistic theories (GPTs) are entangleable, in the sense that their composite exhibits either entangled states or entangled measurements, if and only if they are both non-classical, meaning that neither of the state