ﻻ يوجد ملخص باللغة العربية
In this paper we study image captioning as a conditional GAN training, proposing both a context-aware LSTM captioner and co-attentive discriminator, which enforces semantic alignment between images and captions. We empirically focus on the viability of two training methods: Self-critical Sequence Training (SCST) and Gumbel Straight-Through (ST) and demonstrate that SCST shows more stable gradient behavior and improved results over Gumbel ST, even without accessing discriminator gradients directly. We also address the problem of automatic evaluation for captioning models and introduce a new semantic score, and show its correlation to human judgement. As an evaluation paradigm, we argue that an important criterion for a captioner is the ability to generalize to compositions of objects that do not usually co-occur together. To this end, we introduce a small captioned Out of Context (OOC) test set. The OOC set, combined with our semantic score, are the proposed new diagnosis tools for the captioning community. When evaluated on OOC and MS-COCO benchmarks, we show that SCST-based training has a strong performance in both semantic score and human evaluation, promising to be a valuable new approach for efficient discrete GAN training.
The hubness problem widely exists in high-dimensional embedding space and is a fundamental source of error for cross-modal matching tasks. In this work, we study the emergence of hubs in Visual Semantic Embeddings (VSE) with application to text-image
While most image captioning aims to generate objective descriptions of images, the last few years have seen work on generating visually grounded image captions which have a specific style (e.g., incorporating positive or negative sentiment). However,
An estimated half of the worlds languages do not have a written form, making it impossible for these languages to benefit from any existing text-based technologies. In this paper, a speech-to-image generation (S2IG) framework is proposed which transl
Text-to-Image translation has been an active area of research in the recent past. The ability for a network to learn the meaning of a sentence and generate an accurate image that depicts the sentence shows ability of the model to think more like huma
This paper presents stacked attention networks (SANs) that learn to answer natural language questions from images. SANs use semantic representation of a question as query to search for the regions in an image that are related to the answer. We argue