ترغب بنشر مسار تعليمي؟ اضغط هنا

HD66051: the first eclipsing binary hosting an early-type magnetic star

72   0   0.0 ( 0 )
 نشر من قبل Oleg Kochukhov
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Early-type magnetic stars are rarely found in close binary systems. No such objects were known in eclipsing binaries prior to this study. Here we investigated the eclipsing, spectroscopic double-lined binary HD66051, which exhibits out-of-eclipse photometric variations suggestive of surface brightness inhomogeneities typical of early-type magnetic stars. Using a new set of high-resolution spectropolarimetric observations, we discovered a weak magnetic field on the primary and found intrinsic, element-dependent variability in its spectral lines. The magnetic field structure of the primary is dominated by a nearly axisymmetric dipolar component with a polar field strength $B_{rm d}approx600$ G and an inclination with respect to the rotation axis of $beta_{rm d}=13^{rm o}$. A weaker quadrupolar component is also likely to be present. We combined the radial velocity measurements derived from our spectra with archival optical photometry to determine fundamental masses (3.16 and 1.75 $M_odot$) and radii (2.78 and 1.39 $R_odot$) with a 1-3% precision. We also obtained a refined estimate of the effective temperatures (13000 and 9000 K) and studied chemical abundances for both components with the help of disentangled spectra. We demonstrate that the primary component of HD66051 is a typical late-B magnetic chemically peculiar star with a non-uniform surface chemical abundance distribution. It is not an HgMn-type star as suggested by recent studies. The secondary is a metallic-line star showing neither a strong, global magnetic field nor intrinsic spectral variability. Fundamental parameters provided by our work for this interesting system open unique possibilities for probing interior structure, studying atomic diffusion, and constraining binary star evolution.

قيم البحث

اقرأ أيضاً

We report extensive differential V-band photometry and high-resolution spectroscopic observations of the early F-type, 1.06-day detached eclipsing binary V506 Oph. The observations along with times of minimum light from the literature are used to der ive a very precise ephemeris and the physical properties for the components, with the absolute masses and radii being determined to 0.7% or better. The masses are 1.4153 +/- 0.0100 M(Sun) and 1.4023 +/- 0.0094 M(sun) for the primary and secondary, the radii are 1.725 +/- 0.010 R(Sun) and 1.692 +/- 0.012 R(Sun), and the effective temperatures 6840 +/- 150 K and 6780 +/- 110 K, respectively. The orbit is circular and the stars are rotating synchronously. The accuracy of the radii and temperatures is supported by the resulting distance estimate of 564 +/- 30 pc, in excellent agreement with the value implied by the trigonometric parallax listed in the Gaia/DR2 catalog. Current stellar evolution models from the MIST series for a composition of [Fe/H] = -0.04 match the properties of both stars in V506 Oph very well at an age of 1.83 Gyr, and indicate they are halfway through their core hydrogen-burning phase.
The late B-type star V772 Cas (HD 10260) was previously suspected to be a rare example of a magnetic chemically peculiar star in an eclipsing binary system. Photometric observations of this star obtained by the TESS satellite show clear eclipses with a period of 5.0137 d accompanied by a significant out-of-eclipse variation with the same period. High-resolution spectroscopy reveals V772 Cas to be an SB1 system, with the primary component rotating about a factor two slower than the orbital period and showing chemical peculiarities typical of non-magnetic HgMn chemically peculiar stars. This is only the third eclipsing HgMn star known and, owing to its brightness, is one of the very few eclipsing binaries with chemically peculiar components accessible to detailed follow-up studies. Taking advantage of the photometric and spectroscopic observations available for V772 Cas, we performed modelling of this system with the PHOEBE code. This analysis provided fundamental parameters of the components and demonstrated that the out-of-eclipse brightness variation is explained by the ellipsoidal shape of the evolved, asynchronously rotating primary. This is the first HgMn star for which such variability has been definitively identified.
HD 62658 (B9p V) is a little-studied chemically peculiar star. Light curves obtained by the Kilodegree Extremely Little Telescope (KELT) and Transiting Exoplanet Survey Satellite (TESS) show clear eclipses with a period of about 4.75 d, as well as ou t-of-eclipse brightness modulation with the same 4.75 d period, consistent with synchronized rotational modulation of surface chemical spots. High-resolution ESPaDOnS circular spectropolarimetry shows a clear Zeeman signature in the line profile of the primary; there is no indication of a magnetic field in the secondary. PHOEBE modelling of the light curve and radial velocities indicates that the two components have almost identical masses of about 3 M$_odot$. The primarys longitudinal magnetic field $langle B_z rangle$ varies between about $+100$ and $-250$ G, suggesting a surface magnetic dipole strength $B_{rm d} = 850$~G. Bayesian analysis of the Stokes $V$ profiles indicates $B_{rm d} = 650$~G for the primary and $B_{rm d} < 110$ G for the secondary. The primarys line profiles are highly variable, consistent with the hypothesis that the out-of-eclipse brightness modulation is a consequence of rotational modulation of that stars chemical spots. We also detect a residual signal in the light curve after removal of the orbital and rotational modulations, which might be pulsational in origin; this could be consistent with the weak line profile variability of the secondary. This system represents an excellent opportunity to examine the consequences of magnetic fields for stellar structure via comparison of two stars that are essentially identical with the exception that one is magnetic. The existence of such a system furthermore suggests that purely environmental explanations for the origin of fossil magnetic fields are incomplete.
We report the discovery of the first high-amplitude delta Scuti star in an eclipsing binary, which we have designated UNSW-V-500. The system is an Algol-type semi-detached eclipsing binary of maximum brightness V = 12.52 mag. A best-fitting solution to the binary light curve and two radial velocity curves is derived using the Wilson-Devinney code. We identify a late A spectral type primary component of mass 1.49+/-0.02 M_sun and a late K spectral type secondary of mass 0.33+/-0.02 M_sun, with an inclination of 86.5+/-1.0 degrees, and a period of 5.3504751+/-0.0000006 d. A Fourier analysis of the residuals from this solution is performed using PERIOD04 to investigate the delta Scuti pulsations. We detect a single pulsation frequency of f_1 = 13.621+/-0.015 c/d, and it appears this is the first overtone radial mode frequency. This system provides the first opportunity to measure the dynamical mass for a star of this variable type; previously, masses have been derived from stellar evolution and pulsation models.
We present the discovery of a unique object, a chemically peculiar Ap-type star showing $delta$ Scuti pulsations which is bound in an eclipsing binary system with an orbital period shorter than 3 days. HD 99458 is, therefore, a complex astrophysical laboratory opening doors for studying various, often contradictory, physical phenomena at the same time. It is the first Ap star ever discovered in an eclipsing binary. The orbital period of 2.722 days is the second shortest among all known chemically peculiar (CP2) binary stars. Pulsations of $delta$ Scuti type are also extremely rare among CP2 stars and no unambiguously proven candidate has been reported. HD 99458 was formerly thought to be a star hosting an exoplanet, but we definitely reject this hypothesis by using photometric observations from the K2 mission and new radial velocity measurements. The companion is a low-mass red dwarf star ($M_{2}=0.45(2)$ M$_{odot}$) on an inclined orbit ($i=73.2(6)$ degrees) that shows only grazing eclipses. The rotation and orbital periods are synchronized, while the rotation and orbital axes are misaligned. HD 99458 is an interesting system deserving of more intense investigations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا