ﻻ يوجد ملخص باللغة العربية
The late B-type star V772 Cas (HD 10260) was previously suspected to be a rare example of a magnetic chemically peculiar star in an eclipsing binary system. Photometric observations of this star obtained by the TESS satellite show clear eclipses with a period of 5.0137 d accompanied by a significant out-of-eclipse variation with the same period. High-resolution spectroscopy reveals V772 Cas to be an SB1 system, with the primary component rotating about a factor two slower than the orbital period and showing chemical peculiarities typical of non-magnetic HgMn chemically peculiar stars. This is only the third eclipsing HgMn star known and, owing to its brightness, is one of the very few eclipsing binaries with chemically peculiar components accessible to detailed follow-up studies. Taking advantage of the photometric and spectroscopic observations available for V772 Cas, we performed modelling of this system with the PHOEBE code. This analysis provided fundamental parameters of the components and demonstrated that the out-of-eclipse brightness variation is explained by the ellipsoidal shape of the evolved, asynchronously rotating primary. This is the first HgMn star for which such variability has been definitively identified.
Early-type magnetic stars are rarely found in close binary systems. No such objects were known in eclipsing binaries prior to this study. Here we investigated the eclipsing, spectroscopic double-lined binary HD66051, which exhibits out-of-eclipse pho
We present an analysis of a slightly eccentric ($e=0.05$), partially eclipsing long-period ($P = 69.73$ d) main sequence binary system (WOCS 12009, Sanders 1247) in the benchmark old open cluster M67. Using Kepler K2 and ground-based photometry along
We present CCD photometric observations of an eclipsing binary in the direction of the open cluster Praesepe using the 2 m telescope of IUCAA Girawali Observatory, India. Though the system was classified as an eclipsing binary by Pepper et al.(2008),
Light curves of the eclipsing binary FL Lyr acquired by the Kepler space telescope are analyzed. Eclipse timing measurements for FL Lyr testify to the presence of a third body in the system. Preliminary estimates of its mass and orbital period are >
We present a study of PSR J1723-2837, an eclipsing, 1.86 ms millisecond binary radio pulsar discovered in the Parkes Multibeam survey. Radio timing indicates that the pulsar has a circular orbit with a 15 hr orbital period, a low-mass companion, and