ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal and Maximin Procedures for Multiple Testing Problems

119   0   0.0 ( 0 )
 نشر من قبل Saharon Rosset
 تاريخ النشر 2018
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Multiple testing problems are a staple of modern statistical analysis. The fundamental objective of multiple testing procedures is to reject as many false null hypotheses as possible (that is, maximize some notion of power), subject to controlling an overall measure of false discovery, like family-wise error rate (FWER) or false discovery rate (FDR). In this paper we formulate multiple testing of simple hypotheses as an infinite-dimensional optimization problem, seeking the most powerful rejection policy which guarantees strong control of the selected measure. In that sense, our approach is a generalization of the optimal Neyman-Pearson test for a single hypothesis. We show that for exchangeable hypotheses, for both FWER and FDR and relevant notions of power, these problems can be formulated as infinite linear programs and can in principle be solved for any number of hypotheses. We also characterize maximin rules for complex alternatives, and demonstrate that such rules can be found in practice, leading to improved practical procedures compared to existing alternatives. We derive explicit optimal tests for FWER or FDR control for three independent normal means. We find that the power gain over natural competitors is substantial in all settings examined. Finally, we apply our optimal maximin rule to subgroup analyses in systematic reviews from the Cochrane library, leading to an increase in the number of findings while guaranteeing strong FWER control against the one sided alternative.



قيم البحث

اقرأ أيضاً

A central goal in designing clinical trials is to find the test that maximizes power (or equivalently minimizes required sample size) for finding a true research hypothesis subject to the constraint of type I error. When there is more than one test, such as in clinical trials with multiple endpoints, the issues of optimal design and optimal policies become more complex. In this paper we address the question of how such optimal tests should be defined and how they can be found. We review different notions of power and how they relate to study goals, and also consider the requirements of type I error control and the nature of the policies. This leads us to formulate the optimal policy problem as an explicit optimization problem with objective and constraints which describe its specific desiderata. We describe a complete solution for deriving optimal policies for two hypotheses, which have desired monotonicity properties, and are computationally simple. For some of the optimization formulations this yields optimal policies that are identical to existing policies, such as Hommels procedure or the procedure of Bittman et al. (2009), while for others it yields completely novel and more powerful policies than existing ones. We demonstrate the nature of our novel policies and their improved power extensively in simulation and on the APEX study (Cohen et al., 2016).
Large-scale multiple testing is a fundamental problem in high dimensional statistical inference. It is increasingly common that various types of auxiliary information, reflecting the structural relationship among the hypotheses, are available. Exploi ting such auxiliary information can boost statistical power. To this end, we propose a framework based on a two-group mixture model with varying probabilities of being null for different hypotheses a priori, where a shape-constrained relationship is imposed between the auxiliary information and the prior probabilities of being null. An optimal rejection rule is designed to maximize the expected number of true positives when average false discovery rate is controlled. Focusing on the ordered structure, we develop a robust EM algorithm to estimate the prior probabilities of being null and the distribution of $p$-values under the alternative hypothesis simultaneously. We show that the proposed method has better power than state-of-the-art competitors while controlling the false discovery rate, both empirically and theoretically. Extensive simulations demonstrate the advantage of the proposed method. Datasets from genome-wide association studies are used to illustrate the new methodology.
Assuming that data are collected sequentially from independent streams, we consider the simultaneous testing of multiple binary hypotheses under two general setups; when the number of signals (correct alternatives) is known in advance, and when we on ly have a lower and an upper bound for it. In each of these setups, we propose feasible procedures that control, without any distributional assumptions, the familywise error probabilities of both type I and type II below given, user-specified levels. Then, in the case of i.i.d. observations in each stream, we show that the proposed procedures achieve the optimal expected sample size, under every possible signal configuration, asymptotically as the two error probabilities vanish at arbitrary rates. A simulation study is presented in a completely symmetric case and supports insights obtained from our asymptotic results, such as the fact that knowledge of the exact number of signals roughly halves the expected number of observations compared to the case of no prior information.
88 - Ziyu Xu , Aaditya Ramdas 2020
We derive new algorithms for online multiple testing that provably control false discovery exceedance (FDX) while achieving orders of magnitude more power than previous methods. This statistical advance is enabled by the development of new algorithmi c ideas: earlier algorithms are more static while our new ones allow for the dynamical adjustment of testing levels based on the amount of wealth the algorithm has accumulated. We demonstrate that our algorithms achieve higher power in a variety of synthetic experiments. We also prove that SupLORD can provide error control for both FDR and FDX, and controls FDR at stopping times. Stopping times are particularly important as they permit the experimenter to end the experiment arbitrarily early while maintaining desired control of the FDR. SupLORD is the first non-trivial algorithm, to our knowledge, that can control FDR at stopping times in the online setting.
Hierarchical inference in (generalized) regression problems is powerful for finding significant groups or even single covariates, especially in high-dimensional settings where identifiability of the entire regression parameter vector may be ill-posed . The general method proceeds in a fully data-driven and adaptive way from large to small groups or singletons of covariates, depending on the signal strength and the correlation structure of the design matrix. We propose a novel hierarchical multiple testing adjustment that can be used in combination with any significance test for a group of covariates to perform hierarchical inference. Our adjustment passes on the significance level of certain hypotheses that could not be rejected and is shown to guarantee strong control of the familywise error rate. Our method is at least as powerful as a so-called depth-wise hierarchical Bonferroni adjustment. It provides a substantial gain in power over other previously proposed inheritance hierarchical procedures if the underlying alternative hypotheses occur sparsely along a few branches in the tree-structured hierarchy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا