ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamic Algorithms for Online Multiple Testing

89   0   0.0 ( 0 )
 نشر من قبل Ziyu Xu
 تاريخ النشر 2020
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

We derive new algorithms for online multiple testing that provably control false discovery exceedance (FDX) while achieving orders of magnitude more power than previous methods. This statistical advance is enabled by the development of new algorithmic ideas: earlier algorithms are more static while our new ones allow for the dynamical adjustment of testing levels based on the amount of wealth the algorithm has accumulated. We demonstrate that our algorithms achieve higher power in a variety of synthetic experiments. We also prove that SupLORD can provide error control for both FDR and FDX, and controls FDR at stopping times. Stopping times are particularly important as they permit the experimenter to end the experiment arbitrarily early while maintaining desired control of the FDR. SupLORD is the first non-trivial algorithm, to our knowledge, that can control FDR at stopping times in the online setting.



قيم البحث

اقرأ أيضاً

Standardization has been a widely adopted practice in multiple testing, for it takes into account the variability in sampling and makes the test statistics comparable across different study units. However, despite conventional wisdom to the contrary, we show that there can be a significant loss in information from basing hypothesis tests on standardized statistics rather than the full data. We develop a new class of heteroscedasticity--adjusted ranking and thresholding (HART) rules that aim to improve existing methods by simultaneously exploiting commonalities and adjusting heterogeneities among the study units. The main idea of HART is to bypass standardization by directly incorporating both the summary statistic and its variance into the testing procedure. A key message is that the variance structure of the alternative distribution, which is subsumed under standardized statistics, is highly informative and can be exploited to achieve higher power. The proposed HART procedure is shown to be asymptotically valid and optimal for false discovery rate (FDR) control. Our simulation results demonstrate that HART achieves substantial power gain over existing methods at the same FDR level. We illustrate the implementation through a microarray analysis of myeloma.
A central goal in designing clinical trials is to find the test that maximizes power (or equivalently minimizes required sample size) for finding a true research hypothesis subject to the constraint of type I error. When there is more than one test, such as in clinical trials with multiple endpoints, the issues of optimal design and optimal policies become more complex. In this paper we address the question of how such optimal tests should be defined and how they can be found. We review different notions of power and how they relate to study goals, and also consider the requirements of type I error control and the nature of the policies. This leads us to formulate the optimal policy problem as an explicit optimization problem with objective and constraints which describe its specific desiderata. We describe a complete solution for deriving optimal policies for two hypotheses, which have desired monotonicity properties, and are computationally simple. For some of the optimization formulations this yields optimal policies that are identical to existing policies, such as Hommels procedure or the procedure of Bittman et al. (2009), while for others it yields completely novel and more powerful policies than existing ones. We demonstrate the nature of our novel policies and their improved power extensively in simulation and on the APEX study (Cohen et al., 2016).
We propose a new adaptive empirical Bayes framework, the Bag-Of-Null-Statistics (BONuS) procedure, for multiple testing where each hypothesis testing problem is itself multivariate or nonparametric. BONuS is an adaptive and interactive knockoff-type method that helps improve the testing power while controlling the false discovery rate (FDR), and is closely connected to the counting knockoffs procedure analyzed in Weinstein et al. (2017). Contrary to procedures that start with a $p$-value for each hypothesis, our method analyzes the entire data set to adaptively estimate an optimal $p$-value transform based on an empirical Bayes model. Despite the extra adaptivity, our method controls FDR in finite samples even if the empirical Bayes model is incorrect or the estimation is poor. An extension, the Double BONuS procedure, validates the empirical Bayes model to guard against power loss due to model misspecification.
88 - Marco Scutari 2019
Bayesian networks are a versatile and powerful tool to model complex phenomena and the interplay of their components in a probabilistically principled way. Moving beyond the comparatively simple case of completely observed, static data, which has rec eived the most attention in the literature, in this paper we will review how Bayesian networks can model dynamic data and data with incomplete observations. Such data are the norm at the forefront of research and in practical applications, and Bayesian networks are uniquely positioned to model them due to their explainability and interpretability.
We propose the conditional predictive impact (CPI), a consistent and unbiased estimator of the association between one or several features and a given outcome, conditional on a reduced feature set. Building on the knockoff framework of Cand`es et al. (2018), we develop a novel testing procedure that works in conjunction with any valid knockoff sampler, supervised learning algorithm, and loss function. The CPI can be efficiently computed for high-dimensional data without any sparsity constraints. We demonstrate convergence criteria for the CPI and develop statistical inference procedures for evaluating its magnitude, significance, and precision. These tests aid in feature and model selection, extending traditional frequentist and Bayesian techniques to general supervised learning tasks. The CPI may also be applied in causal discovery to identify underlying multivariate graph structures. We test our method using various algorithms, including linear regression, neural networks, random forests, and support vector machines. Empirical results show that the CPI compares favorably to alternative variable importance measures and other nonparametric tests of conditional independence on a diverse array of real and simulated datasets. Simulations confirm that our inference procedures successfully control Type I error and achieve nominal coverage probability. Our method has been implemented in an R package, cpi, which can be downloaded from https://github.com/dswatson/cpi.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا