ترغب بنشر مسار تعليمي؟ اضغط هنا

Polarized cold cloud of thulium atom

88   0   0.0 ( 0 )
 نشر من قبل Alexey Akimov
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Minimization of internal degrees of freedom is an important step in the cooling of atomic species to degeneracy temperature. Here, we report on the loading of 6*10^5 thulium atoms optically polarized at maximum possible magnetic quantum number mf=-4 state into dipole trap operating at 532 nm. The purity of polarizations of the atoms was experimentally verified using a Stern-Gerlach-type experiment. Experimental measured polarization of the state is 3.91(26).

قيم البحث

اقرأ أيضاً

We study the time-dependent response of a cold atom cloud illuminated by a laser beam immediately after the light is switched on experimentally and theoretically. We show that cooperative effects, which have been previously investigated in the decay dynamics after the laser is switched off, also give rise to characteristic features in this configuration. In particular, we show that collective Rabi oscillations exhibit a superradiant damping. We first consider an experiment that is performed in the linear-optics regime and well described by a linear coupled-dipole theory. We then show that this linear-optics model breaks down when increasing the saturation parameter, and that the experimental results are then well described by a nonlinear mean-field theory.
We study cold heteronuclear atom ion collisions by immersing a trapped single ion into an ultracold atomic cloud. Using ultracold atoms as reaction targets, our measurement is sensitive to elastic collisions with extremely small energy transfer. The observed energy-dependent elastic atom-ion scattering rate deviates significantly from the prediction of Langevin but is in full agreement with the quantum mechanical cross section. Additionally, we characterize inelastic collisions leading to chemical reactions at the single particle level and measure the energy-dependent reaction rate constants. The reaction products are identified by in-trap mass spectrometry, revealing the branching ratio between radiative and non-radiative charge exchange processes.
We report the operation of a cold-atom inertial sensor in a joint interrogation scheme, where we simultaneously prepare a cold-atom source and operate an atom interferometer in order to eliminate dead times. Noise aliasing and dead times are conseque nces of the sequential operation which is intrinsic to cold-atom atom interferometers. Both phenomena have deleterious effects on the performance of these sensors. We show that our continuous operation improves the short-term sensitivity of atom interferometers, by demonstrating a record rotation sensitivity of $100$ nrad.s$^{-1}/sqrt{rm Hz}$ in a cold-atom gyroscope of $11$ cm$^2$ Sagnac area. We also demonstrate a rotation stability of $1$ nrad.s$^{-1}$ after $10^4$ s of integration, improving previous results by an order of magnitude. We expect that the continuous operation will allow cold-atom inertial sensors with long interrogation time to reach their full sensitivity, determined by the quantum noise limit.
We present a horizontal gravity gradiometer atom interferometer for precision gravitational tests. The horizontal configuration is superior for maximizing the inertial signal in the atom interferometer from a nearby proof mass. In our device, we have suppressed spurious noise associated with the horizonal configuration to achieve a differential acceleration sensitivity of 4.2$times10^{-9}g/sqrt{Hz}$ over a 70 cm baseline or 3.0$times10^{-9}g/sqrt{Hz}$ inferred per accelerometer. Using the performance of this instrument, we characterize the results of possible future gravitational tests. We complete a proof-of-concept measurement of the gravitational constant with a precision of 3$times10^{-4}$ that is competitive with the present limit of 1.2$times10^{-4}$ using other techniques. From this measurement, we provide a statistical constraint on a Yukawa-type fifth force at 8$times$10$^{-3}$ near the poorly known length scale of 10 cm. Limits approaching 10$^{-5}$ appear feasible. We discuss improvements that can enable uncertainties falling well below 10$^{-5}$ for both experiments.
Optical frequency combs provide the clockwork to relate optical frequencies to radio frequencies. Hence, combs allow to measure optical frequencies with respect to a radio frequency where the accuracy is limited only by the reference signal. In order to provide a stable link between the radio and optical frequencies, the two parameters of the frequency comb must be fixed: the carrier envelope offset frequency $f_{rm ceo}$ and the pulse repetition-rate $f_{rm rep}$. We have developed the first optical frequency comb based on difference frequency generation (DFG) that eliminates $f_{rm ceo}$ by design - specifically tailored for applications in cold atom physics. An $f_{rm ceo}$-free spectrum at 1550 nm is generated from a super continuum spanning more than an optical octave. Established amplification and frequency conversion techniques based on reliable telecom fiber technology allow generation of multiple wavelength outputs. In this paper we discuss the frequency comb design, characterization, and optical frequency measurement of Sr Rydberg states. The DFG technique allows for a compact and robust, passively $f_{rm ceo}$ stable frequency comb significantly improving reliability in practical applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا