ﻻ يوجد ملخص باللغة العربية
We study the time-dependent response of a cold atom cloud illuminated by a laser beam immediately after the light is switched on experimentally and theoretically. We show that cooperative effects, which have been previously investigated in the decay dynamics after the laser is switched off, also give rise to characteristic features in this configuration. In particular, we show that collective Rabi oscillations exhibit a superradiant damping. We first consider an experiment that is performed in the linear-optics regime and well described by a linear coupled-dipole theory. We then show that this linear-optics model breaks down when increasing the saturation parameter, and that the experimental results are then well described by a nonlinear mean-field theory.
We study the dynamics of neutral cold atoms in an $L$-shaped crossed-beam optical waveguide formed by two perpendicular red-detuned lasers of different intensities and a blue-detuned laser at the corner. Complemented with a vibrational cooling proces
We study cold heteronuclear atom ion collisions by immersing a trapped single ion into an ultracold atomic cloud. Using ultracold atoms as reaction targets, our measurement is sensitive to elastic collisions with extremely small energy transfer. The
The coherence of quantum systems is crucial to quantum information processing. While it has been demonstrated that superconducting qubits can process quantum information at microelectronics rates, it remains a challenge to preserve the coherence and
Microgravity eases several constraints limiting experiments with ultracold and condensed atoms on ground. It enables extended times of flight without suspension and eliminates the gravitational sag for trapped atoms. These advantages motivated numero
Minimization of internal degrees of freedom is an important step in the cooling of atomic species to degeneracy temperature. Here, we report on the loading of 6*10^5 thulium atoms optically polarized at maximum possible magnetic quantum number mf=-4