ترغب بنشر مسار تعليمي؟ اضغط هنا

V729 Sgr: A long period dwarf nova showing negative superhumps during quiescence

82   0   0.0 ( 0 )
 نشر من قبل Gavin Ramsay
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report K2 observations of the eclipsing cataclysmic variable V729 Sgr which covered nearly 80 days in duration. We find five short outbursts and two long outbursts, one of which shows a clear plateau phase in the rise to maximum brightness. The mean time between successive short outbursts is ~10 d while the time between the two long outbursts is ~38 d. The frequency of these outbursts are unprecedented for a CV above the orbital period gap. We find evidence that the mid-point of the eclipse occurs systematically earlier in outburst than in quiescence. During five of the six quiescent epochs we find evidence for a second photometric period which is roughly 5 percent shorter than the 4.16 h orbital period which we attribute to negative superhumps. V729 Sgr is therefore one of the longest period CVs to show negative superhumps during quiescence.



قيم البحث

اقرأ أيضاً

139 - Taichi Kato 2013
We analyzed the Kepler long cadence data of KIC 7524178 (=KIS J192254.92+430905.4), and found that it is an SU UMa-type dwarf nova with frequent normal outbursts. The signal of the negative superhump was always the dominant one even during the supero utburst, in contrast to our common knowledge about superhumps in dwarf novae. The signal of the positive superhump was only transiently seen during the superoutburst, and it quickly decayed after the superoutburst. The frequency variation of the negative superhump was similar to the two previously studied dwarf novae in the Kepler field, V1504 Cyg and V344 Lyr. This is the first object in which the negative superhumps dominate throughout the supercycle. Nevertheless, the superoutburst was faithfully accompanied by the positive superhump, indicating that the tidal eccentric instability is essential for triggering a superoutburst. All the pieces of evidence strengthen the thermal-tidal instability as the origin of the superoutburst and supercycle, making this object the third such example in the Kepler field. This object had unusually small (~1.0 mag) outburst amplitude and we discussed that the object has a high mass-transfer rate close to the thermal stability limit of the accretion disk. The periods of the negative and positive superhumps, and that of the candidate orbital period were 0.07288 d (average, variable in the range 0.0723-0.0731 d), 0.0785 d (average, variable in the range 0.0772-0.0788 d) and 0.074606(1) d, respectively.
The multi-site photometric observations of MN Dra were made over 77 nights in August-November, 2009. The total exposure was 433 hours. During this time the binary underwent two superoutbursts and five normal outbursts. During the course of first supe routburst period of positive superhumps decreased with extremely large $dot P = -1.5 times 1.0^{-4}$ for SU UMa-like dwarf novae, confirming known behavior of MN Dra [1]. Between the superoutbursts MN Dra displayed negative superhumps. Their period changed cyclically around 0.096-day value.
Context. Although the disc instability model is widely accepted as the explanation for dwarf nova outbursts, it is still necessary to confront its predictions to observations because much of the constraints on angular momentum transport in accretion discs are derived from the application of this model to real systems. Aims. We test the predictions of the model concerning the multicolour time evolution of outbursts for two well--observed systems, SS Cyg and VW Hyi. Methods. We calculate the multicolour evolution of dwarf nova outbursts using the disc instability model and taking into account the contribution from the irradiated secondary, the white dwarf and the hot spot. Results. Observations definitely show the existence of a hysteresis in the optical colour-magnitude diagram during the evolution of dwarf nova outbursts. We find that the disc instability model naturally explains the existence and the orientation of this hysteresis. For the specific cases of SS Cyg and VW Hyi, the colour and magnitude ranges covered during the evolution of the system are in reasonable agreement with observations. However, the observed colours are bluer than observed near the peak of the outbursts -- as in steady systems, and the amplitude of the hysteresis cycle is smaller than observed. The predicted colours significantly depend on the assumptions made for calculating the disc spectrum during rise, and on the magnitude of the secondary irradiation for the decaying part of the outburst. Conclusions. Improvements of the spectral disc models are strongly needed if one wishes to address the system evolution in the UV.
84 - Taichi Kato 2019
The post-outburst rebrightening phenomenon in dwarf novae and X-ray novae is still one of the most challenging subjects for theories of accretion disks. It has been widely recognized that post-outburst rebrightenings are a key feature of WZ Sge-type dwarf novae, which predominantly have short ($lesssim$0.06 d) orbital periods. I found four post-outburst rebrightenings in ASASSN-14ho during its 2014 outburst, whose orbital period has recently measured to be exceptionally long [0.24315(10) d]. Using the formal solution of the radial velocity study in the literature, I discuss the possibility that this object can be an SU UMa-type dwarf nova near the stability border of the 3:1 resonance despite its exceptionally long orbital period. Such objects are considered to be produced if mass transfer occurs after the secondary has undergone significant nuclear evolution and they may be hidden in a significant number among dwarf novae showing multiple post-outburst rebrightenings.
We present the analysis results of an eclipsing cataclysmic variable (CV) V729 Sgr, based on our observations and AAVSO data. Some outburst parameters were determined such as outburst amplitude ($A_{n}$) and recurrence time ($T_{n}$), and then the re lationship between $A_{n}$ and $T_{n}$ is discussed. A cursory examination for the long-term light curves reveals that there are small-amplitude outbursts and dips present, which is similar to the behaviors seen in some nova-like CVs (NLs). More detailed inspection suggests that the outbursts in V729 Sgr may be Type A (outside-in) with a rise time $sim1.76$ d. Further analysis also shows that V729 Sgr is an intermediate between dwarf nova and NLs, and we constrain its mass transfer rate to $1.59times10^{-9} < dot{M}_{2} < 5.8times10^{-9}M_{odot}yr^{-1}$ by combining the theory for Z Cam type stars with observations. Moreover, the rapid oscillations in V729 Sgr were detected and analyzed for the first time. Our results indicate that the oscillation at $sim 25.5$ s is a true DNO, being associated with the accretion events. The classification of the oscillations at $sim 136$ and $154$ s as lpDNOs is based on the relation between $P_{lpDNOs}$ and $P_{DNOs}$. Meanwhile, the QPOs at the period of hundreds of seconds are also detected.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا