ﻻ يوجد ملخص باللغة العربية
Dinur, Khot, Kindler, Minzer and Safra (2016) recently showed that the (imperfect completeness variant of) Khots 2 to 2 games conjecture follows from a combinatorial hypothesis about the soundness of a certain Grassmanian agreement tester. In this work, we show that the hypothesis of Dinur et. al. follows from a conjecture we call the Inverse Shortcode Hypothesis characterizing the non-expanding sets of the degree-two shortcode graph. We also show the latter conjecture is equivalent to a characterization of the non-expanding sets in the Grassman graph, as hypothesized by a follow-up paper of Dinur et. al. (2017). Following our work, Khot, Minzer and Safra (2018) proved the Inverse Shortcode Hypothesis. Combining their proof with our result and the reduction of Dinur et. al. (2016), completes the proof of the 2 to 2 conjecture with imperfect completeness. Moreover, we believe that the shortcode graph provides a useful view of both the hypothesis and the reduction, and might be useful in extending it further.
We study the NP-hard textsc{$k$-Sparsest Cut} problem ($k$SC) in which, given an undirected graph $G = (V, E)$ and a parameter $k$, the objective is to partition vertex set into $k$ subsets whose maximum edge expansion is minimized. Herein, the edge
In this work, we achieve gap amplification for the Small-Set Expansion problem. Specifically, we show that an instance of the Small-Set Expansion Problem with completeness $epsilon$ and soundness $frac{1}{2}$ is at least as difficult as Small-Set Exp
We give an algorithm for solving unique games (UG) instances whenever low-degree sum-of-squares proofs certify good bounds on the small-set-expansion of the underlying constraint graph via a hypercontractive inequality. Our algorithm is in fact more
We give improved separations for the query complexity analogue of the log-approximate-rank conjecture i.e. we show that there are a plethora of total Boolean functions on $n$ input bits, each of which has approximate Fourier sparsity at most $O(n^3)$
The degree-$4$ Sum-of-Squares (SoS) SDP relaxation is a powerful algorithm that captures the best known polynomial time algorithms for a broad range of problems including MaxCut, Sparsest Cut, all MaxCSPs and tensor PCA. Despite being an explicit alg