ترغب بنشر مسار تعليمي؟ اضغط هنا

Disc instabilities and nova eruptions in symbiotic systems: RS Ophiuchi and Z Andromedae

41   0   0.0 ( 0 )
 نشر من قبل Ananda Deepika Bollimpalli
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using the disc instability model for dwarf novae and soft X-ray transients, we investigate the stability of accretion discs in long-period binary systems. We simulate outbursts due to this thermal-viscous instability for two symbiotic systems, RS~Ophiuchi and Z~Andromedae. The outburst properties deduced from our simulations suggest that, although the recurrent nova events observed in RS~Oph are due to a thermonuclear runaway at the white dwarf surface, these runaways are triggered by accretion disc instabilities. In quiescence, the disc builds up its mass and it is only during the disc-instability outburst that mass is accreted on to the white dwarf at rates comparable to or larger than the mass-transfer rate. For a mass-transfer rate in the range $10^{-8}$ to $10^{-7}~{rm M}_{odot}$ yr$^{-1}$, the accretion rate and the mass accreted are sufficient to lead to a thermonuclear runaway during one of a series of a few dwarf nova outbursts, barely visible in the optical, but easily detectable in X-rays. In the case of Z~And, persistent irradiation of the disc by the very hot white-dwarf surface strongly modifies the dwarf-nova outburst properties, making them significant only for very high mass-transfer rates, of the order of $10^{-6}~{rm M}_{odot}$ yr$^{-1}$, much higher than the expected secular mean in this system. It is thus likely that the so-called `combination nova outburst observed in years 2000 to 2002 was triggered not by a dwarf-nova instability but by a mass-transfer enhancement from the giant companion, leading to an increase in nuclear burning at the accreting white-dwarf surface.

قيم البحث

اقرأ أيضاً

Swift X-ray observations of the ~60 day super-soft phase of the recurrent nova RS Ophiuchi 2006 show the progress of nuclear burning on the white dwarf in exquisite detail. First seen 26 days after the optical outburst, this phase started with extrem e variability likely due to variable absorption, although intrinsic white dwarf variations are not excluded. About 32 days later, a steady decline in count-rate set in. NLTE model atmosphere spectral fits during the super-soft phase show that the effective temperature of the white dwarf increases from ~65 eV to ~90 eV during the extreme variability phase, falling slowly after about day 60 and more rapidly after day 80. The bolometric luminosity is seen to be approximately constant and close to Eddington from day 45 up to day 60, the subsequent decline possibly signalling the end of extensive nuclear burning. Before the decline, a multiply-periodic, ~35 s modulation of the soft X-rays was present and may be the signature of a nuclear fusion driven instability. Our measurements are consistent with a white dwarf mass near the Chandrasekhar limit; combined with a deduced accumulation of mass transferred from its binary companion, this leads us to suggest RS Oph is a strong candidate for a future supernova explosion. The main uncertainty now is whether the WD is the CO type necessary for a SN Ia. This may be confirmed by detailed abundance analyses of spectroscopic data from the outbursts.
237 - A. Skopal 2008
We present development of the collimated bipolar jets from the symbiotic prototype Z And that appeared and disappeared during its 2006 outburst. In 2006 July Z And reached its historical maximum at U ~ 8.0. During this period, rapid photometric varia tions with Dm ~ 0.06 mag on the timescale of hours developed. Simultaneously, high-velocity satellite components appeared on both sides of the H-alpha and H-beta emission line profiles. They were launched asymmetrically with the red/blue velocity ratio of 1.2 - 1.3. From about mid-August they became symmetric. Their spectral properties indicated ejection of bipolar jets collimated within an average opening angle of 6.1 degrees. We estimated average outflow rate via jets to dM(jet)/dt ~ 2xE10-6(R(jet)/1AU)**(1/2) M(Sun)/year, during their August - September maximum, which corresponds to the emitting mass in jets, M(jet, emitting) ~ 6xE-10(Rjet)/1AU)^{3/2} M(Sun). During their lifetime, the jets released the total mass of M(jet, total) approx 7.4x1E-7 M(Sun). Evolution in the rapid photometric variability and asymmetric ejection of jets around the optical maximum can be explained by a disruption of the inner parts of the disk caused by radiation-induced warping of the disk.
76 - R. Zamanov , G. Latev , S. Boeva 2015
We report observations of the flickering variability of the symbiotic recurrent nova RS~Oph at quiescence in five bands ($UBVRI$). We find evidence of a correlation between the peak-to-peak flickering amplitude ($Delta F$) and the average flux of the hot component ($F_{rm av}$). The correlation is highly significant, with a correlation coefficient of 0.85 and a $p$-value of~$sim 10^{-20}$. Combining the data from all wavebands, we find a dependence of the type $Delta F propto F^k_{rm av}$, with power-law index $k = 1.02 pm 0.04$ for the $UBVRI$ flickering of RS~Oph. Thus, the relationship between the amplitude of variability and the average flux of the hot component is consistent with linearity. The rms amplitude of flickering is on average 8 per cent ($pm2$ per cent) of $F_{rm av}$. The detected correlation is similar to that found in accreting black holes/neutron stars and cataclysmic variables. The possible reasons are briefly discussed. The data are available upon request from the authors.
70 - N. M. H. Vaytet 2011
Following the Swift X-ray observations of the 2006 outburst of the recurrent nova RS Ophiuchi, we developed hydrodynamical models of mass ejection from which the forward shock velocities were used to estimate the ejecta mass and velocity. In order to further constrain our model parameters, here we present synthetic X-ray spectra from our hydrodynamical calculations which we compare to the Swift data. An extensive set of simulations was carried out to find a model which best fits the spectra up to 100 days after outburst. We find a good fit at high energies but require additional absorption to match the low energy emission. We estimate the ejecta mass to be in the range (2-5) x 10^{-7} solar masses and the ejection velocity to be greater than 6000 km/s (and probably closer to 10,000 km/s). We also find that estimates of shock velocity derived from gas temperatures via standard model fits to the X-ray spectra are much lower than the true shock velocities.
70 - J. L. Sokoloski 2006
Stellar explosions such as novae and supernovae produce most of the heavy elements in the Universe. Although the onset of novae from runaway thermonuclear fusion reactions on the surface of a white dwarf in a binary star system is understood[1], the structure, dynamics, and mass of the ejecta are not well known. In rare cases, the white dwarf is embedded in the wind nebula of a red-giant companion; the explosion products plow through the nebula and produce X-ray emission. Early this year, an eruption of the recurrent nova RS Ophiuchi[2,3] provided the first opportunity to perform comprehensive X-ray observations of such an event and diagnose conditions within the ejecta. Here we show that the hard X-ray emission from RS Ophiuchi early in the eruption emanates from behind a blast wave, or outward-moving shock wave, that expanded freely for less than 2 days and then decelerated due to interaction with the nebula. The X-rays faded rapidly, suggesting that the blast wave deviates from the standard spherical shell structure[4-6]. The early onset of deceleration indicates that the ejected shell had a low mass, the white dwarf has a high mass[7], and that RS Ophiuchi is a progenitor of the type of supernova integral to studies of the expansion of the universe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا