ترغب بنشر مسار تعليمي؟ اضغط هنا

X-Ray Emitting Blast Wave from the Recurrent Nova RS Ophiuchi

71   0   0.0 ( 0 )
 نشر من قبل Jennifer L. Sokoloski
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J. L. Sokoloski




اسأل ChatGPT حول البحث

Stellar explosions such as novae and supernovae produce most of the heavy elements in the Universe. Although the onset of novae from runaway thermonuclear fusion reactions on the surface of a white dwarf in a binary star system is understood[1], the structure, dynamics, and mass of the ejecta are not well known. In rare cases, the white dwarf is embedded in the wind nebula of a red-giant companion; the explosion products plow through the nebula and produce X-ray emission. Early this year, an eruption of the recurrent nova RS Ophiuchi[2,3] provided the first opportunity to perform comprehensive X-ray observations of such an event and diagnose conditions within the ejecta. Here we show that the hard X-ray emission from RS Ophiuchi early in the eruption emanates from behind a blast wave, or outward-moving shock wave, that expanded freely for less than 2 days and then decelerated due to interaction with the nebula. The X-rays faded rapidly, suggesting that the blast wave deviates from the standard spherical shell structure[4-6]. The early onset of deceleration indicates that the ejected shell had a low mass, the white dwarf has a high mass[7], and that RS Ophiuchi is a progenitor of the type of supernova integral to studies of the expansion of the universe.



قيم البحث

اقرأ أيضاً

Near-infrared spectra are presented for the recent 2006 outburst of the recurrent nova RS Ophiuchi (RS Oph).We report the rare detection of an infrared shock wave as the nova ejecta plows into the pre-existing wind of the secondary in the RS Oph syst em consisting of a white dwarf (WD) primary and a red giant secondary. The evolution of the shock is traced through a free expansion stage to a decelerative phase. The behavior of the shock velocity with time is found to be broadly consistent with current shock models. The present observations also imply that the WD in the RS Oph system has a high mass indicating that it could be a potential SNIa candidate. We also discuss the results from a recent study showing that the near-IR continuum from the recent RS Oph eruption does not originate in an expanding fireball. However, the present work shows that the IR line emission does have an origin in an expanding shock wave.
121 - N. M. H. Vaytet 2011
Following the Swift X-ray observations of the 2006 outburst of the recurrent nova RS Ophiuchi, we developed hydrodynamical models of mass ejection from which the forward shock velocities were used to estimate the ejecta mass and velocity. In order to further constrain our model parameters, here we present synthetic X-ray spectra from our hydrodynamical calculations which we compare to the Swift data. An extensive set of simulations was carried out to find a model which best fits the spectra up to 100 days after outburst. We find a good fit at high energies but require additional absorption to match the low energy emission. We estimate the ejecta mass to be in the range (2-5) x 10^{-7} solar masses and the ejection velocity to be greater than 6000 km/s (and probably closer to 10,000 km/s). We also find that estimates of shock velocity derived from gas temperatures via standard model fits to the X-ray spectra are much lower than the true shock velocities.
Swift X-ray observations of the ~60 day super-soft phase of the recurrent nova RS Ophiuchi 2006 show the progress of nuclear burning on the white dwarf in exquisite detail. First seen 26 days after the optical outburst, this phase started with extrem e variability likely due to variable absorption, although intrinsic white dwarf variations are not excluded. About 32 days later, a steady decline in count-rate set in. NLTE model atmosphere spectral fits during the super-soft phase show that the effective temperature of the white dwarf increases from ~65 eV to ~90 eV during the extreme variability phase, falling slowly after about day 60 and more rapidly after day 80. The bolometric luminosity is seen to be approximately constant and close to Eddington from day 45 up to day 60, the subsequent decline possibly signalling the end of extensive nuclear burning. Before the decline, a multiply-periodic, ~35 s modulation of the soft X-rays was present and may be the signature of a nuclear fusion driven instability. Our measurements are consistent with a white dwarf mass near the Chandrasekhar limit; combined with a deduced accumulation of mass transferred from its binary companion, this leads us to suggest RS Oph is a strong candidate for a future supernova explosion. The main uncertainty now is whether the WD is the CO type necessary for a SN Ia. This may be confirmed by detailed abundance analyses of spectroscopic data from the outbursts.
Chandra/HETG observations of the recurrent nova RS Ophiuchi at day 13.9 of its 2006 outburst reveal a spectrum covering a large range in plasma temperature and characterized by asymmetric and blue-shifted emission lines. We investigate the origin of these asymmetries and broadening of emission lines. We perform 3-D hydrodynamic simulations of the blast wave from the 2006 outburst, propagating through the inhomogeneous CSM. The model takes into account the thermal conduction (including the effects of heat flux saturation) and the radiative cooling. From the simulations, we synthesize the X-ray emission and derive the spectra as they would be observed with Chandra/HETG. Our model reproduces the observed X-ray emission in a natural way if the CSM in which the outburst occurred is characterized by an equatorial density enhancement. Our ``best-fit model predicts that most of the early X-ray emission originates from a small region propagating in the direction perpendicular to the line-of-sight and localized just behind the interaction front between the blast wave and the equatorial density enhancement. The model predicts asymmetric and blue-shifted line profiles remarkably similar to those observed. These asymmetries are due to substantial X-ray absorption of red-shifted emission by ejecta material. The comparison of high quality data of Chandra/HETG with detailed hydrodynamic modeling has allowed us to unveil, for the first time, the details of the structure emitting in the X-ray band in early phases of the outburst evolution, contributing to a better understanding of the physics of interactions between nova blasts and CSM in recurrent novae. This may have implications for whether or not RS Ophiuchi is a Type Ia SN progenitor system.
136 - R. Zamanov , G. Latev , S. Boeva 2015
We report observations of the flickering variability of the symbiotic recurrent nova RS~Oph at quiescence in five bands ($UBVRI$). We find evidence of a correlation between the peak-to-peak flickering amplitude ($Delta F$) and the average flux of the hot component ($F_{rm av}$). The correlation is highly significant, with a correlation coefficient of 0.85 and a $p$-value of~$sim 10^{-20}$. Combining the data from all wavebands, we find a dependence of the type $Delta F propto F^k_{rm av}$, with power-law index $k = 1.02 pm 0.04$ for the $UBVRI$ flickering of RS~Oph. Thus, the relationship between the amplitude of variability and the average flux of the hot component is consistent with linearity. The rms amplitude of flickering is on average 8 per cent ($pm2$ per cent) of $F_{rm av}$. The detected correlation is similar to that found in accreting black holes/neutron stars and cataclysmic variables. The possible reasons are briefly discussed. The data are available upon request from the authors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا