ترغب بنشر مسار تعليمي؟ اضغط هنا

A comprehensive study of high-energy gamma-ray and radio emission from Cyg X-3

62   0   0.0 ( 0 )
 نشر من قبل Andrzej A. Zdziarski
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study high-energy $gamma$-rays observed from Cyg X-3 by the Fermi Large Area Telescope and the 15-GHz emission observed by the Ryle Telescope and the Arcminute Microkelvin Imager. We measure the $gamma$-ray spectrum averaged over strong flares much more accurately than before, and find it well modelled by Compton scattering of stellar radiation by relativistic electrons with the power law index of $simeq$3.5 and a low-energy cutoff at the Lorentz factor of $sim!10^3$. We find a weaker spectrum in the soft spectral state, but only upper limits in the hard and intermediate states. We measure strong orbital modulation during the flaring state, well modelled by anisotropic Compton scattering of blackbody photons from the donor by jet relativistic electrons. We discover a weaker orbital modulation of the 15 GHz radio emission, which is well modelled by free-free absorption by the stellar wind. We then study cross-correlations between radio, $gamma$-ray and X-ray emissions. We find the cross-correlation between the radio and $gamma$-ray emissions peaks at a lag less than 1 d, while we detect a distinct radio lag of $sim$50 d with respect to the soft X-rays in the soft spectral state.

قيم البحث

اقرأ أيضاً

With frequent flaring activity of its relativistic jets, Cygnus X-3 is one of the most active microquasars and is the only Galactic black hole candidate with confirmed high energy Gamma-ray emission, thanks to detections by Fermi/LAT and AGILE. In 20 11, Cygnus X-3 was observed to transit to a soft X-ray state, which is known to be associated with high-energy Gamma-ray emission. We present the results of a multi-wavelength campaign covering a quenched state, when radio emission from Cygnus X-3 is at its weakest and the X-ray spectrum is very soft. A giant (~ 20 Jy) optically thin radio flare marks the end of the quenched state, accompanied by rising non-thermal hard X-rays. Fermi/LAT observations (E >100 MeV) reveal renewed Gamma-ray activity associated with this giant radio flare, suggesting a common origin for all non-thermal components. In addition, current observations unambiguously show that the Gamma-ray emission is not exclusively related to the rare giant radio flares. A 3-week period of Gamma-ray emission is also detected when Cygnus X-3 was weakly flaring in radio, right before transition to the radio quenched state. No Gamma rays are observed during the ~ one-month long quenched state, when the radio flux is weakest. Our results suggest transitions into and out of the ultrasoft X-ray (radio quenched) state trigger Gamma-ray emission, implying a connection to the accretion process, and also that the Gamma-ray activity is related to the level of radio flux (and possibly shock formation), strengthening the connection to the relativistic jets.
125 - Lara Nava 2018
The number of Gamma-Ray Bursts (GRBs) detected at high energies ($sim,0.1-100$ GeV) has seen a rapid increase over the last decade, thanks to observations from the Fermi-Large Area Telescope. The improved statistics and quality of data resulted in a better characterisation of the high-energy emission properties and in stronger constraints on theoretical models. In spite of the many achievements and progresses, several observational properties still represent a challenge for theoretical models, revealing how our understanding is far from being complete. This paper reviews the main spectral and temporal properties of $sim,0.1-100$ GeV emission from GRBs and summarises the most promising theoretical models proposed to interpret the observations. Since a boost for the understanding of GeV radiation might come from observations at even higher energies, the present status and future prospects for observations at very-high energies (above $sim$ 100 GeV) are also discussed. The improved sensitivity of upcoming facilities, coupled to theoretical predictions, supports the concrete possibility for future ground GRB detections in the high/very-high energy domain.
We present model fits to the X-ray line spectrum of the well known High Mass X-ray binary Cyg X-3. The primary observational dataset is a spectrum taken with the $Chandra$ X-ray Observatory High Energy Transmission Grating (HETG) in 2006, though we c ompare it to all the other observations of this source taken so far by this instrument. We show that the density must be $geq 10^{12}$ cm$^{-3}$ in the region responsible for most of the emission. We discuss the influence of the dust scattering halo on the broad band spectrum and we argue that dust scattering and extinction is not the most likely origin for the narrow featureseen near the Si K edge. We identify the features of a wind in the profiles of the strong resonance lines and we show that the wind is more apparent in the lines from the lighter elements. We argue that this wind is most likely associated with the companion star. We show that the intensities of most lines can be fitted, crudely, by a single component photoionized model. However, the iron K lines do not fit with this model. We show that the iron K line variability as a function of orbital phase is different from the lower energy lines, which indicates that the lines arise in physically distinct regions. We discuss the interpretation of these results in the context of what is known about the system and similar sys
Cygnus X-3 is a microquasar consisting of an accreting compact object orbiting around a Wolf-Rayet star. It has been detected at radio frequencies and up to high-energy gamma rays (above 100 MeV). However, many models also predict a very high energy (VHE) emission (above hundreds of GeV) when the source displays relativistic persistent jets or transient ejections. Therefore, detecting such emission would improve the understanding of the jet physics. The imaging atmospheric Cherenkov telescope MAGIC observed Cygnus X-3 for about 70 hours between 2006 March and 2009 August in different X-ray/radio spectral states and also during a period of enhanced gamma-ray emission. MAGIC found no evidence for a VHE signal from the direction of the microquasar. An upper limit to the integral flux for energies higher than 250 GeV has been set to 2.2 x 10-12 photons cm-2 s-1 (95% confidence level). This is the best limit so far to the VHE emission from this source. The non-detection of a VHE signal during the period of activity in the high-energy band sheds light on the location of the possible VHE radiation favoring the emission from the innermost region of the jets, where absorption is significant. The current and future generations of Cherenkov telescopes may detect a signal under precise spectral conditions.
Tidal disruption events (TDE) have been considered as cosmic-ray and neutrino sources for a decade. We suggest two classes of new scenarios for high-energy multi-messenger emission from TDEs that do not have to harbor powerful jets. First, we investi gate high-energy neutrino and gamma-ray production in the core region of a supermassive black hole. In particular, we show that about 1-100 TeV neutrinos and MeV gamma-rays can efficiently be produced in hot coronae around an accretion disk. We also study the consequences of particle acceleration in radiatively inefficient accretion flows (RIAFs). Second, we consider possible cosmic-ray acceleration by sub-relativistic disk-driven winds or interactions between tidal streams, and show that subsequent hadronuclear and photohadronic interactions inside the TDE debris lead to GeV-PeV neutrinos and sub-GeV cascade gamma-rays. We demonstrate that these models should be accompanied by soft gamma-rays or hard X-rays as well as optical/UV emission, which can be used for future observational tests. Although this work aims to present models of non-jetted high-energy emission, we discuss the implications of the TDE AT2019dsg that might coincide with the high-energy neutrino IceCube-191001A, by considering the corona, RIAF, hidden sub-relativistic wind, and hidden jet models. It is not yet possible to be conclusive about their physical association and the expected number of neutrinos is typically much less than unity. We find that the most optimistic cases of the corona and hidden wind models could be consistent with the observation of IceCube-191001A, whereas jet models are unlikely to explain the multi-messenger observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا