ﻻ يوجد ملخص باللغة العربية
A recent comparison of the massive galaxy cluster Abell 2744 with the Millennium XXL (MXXL) N-body simulation has hinted at a tension between the observed substructure distribution and the predictions of LambdaCDM. Follow-up investigations indicated that this could be due to the contribution from the host halo and the subhalo finding algorithm used. To be independent of any subhalo finding algorithm, we therefore investigate the particle data of the MXXL simulation directly. We propose a new method to find substructures in 2D mass maps using a wavelet transform, which treats the simulation and observations equally. Using the same criteria to define a subhalo in observations and simulated data, we find three Abell 2744 analogues in the MXXL simulation. Thus the observations in Abell 2744 are in agreement with the predictions of LambdaCDM. We investigate the reasons for the discrepancy between the results obtained from the SUBFIND and full particle data analyses. We find that this is due to incompatible substructure definitions in observations and SUBFIND.
We present a joint optical/X-ray analysis of the massive galaxy cluster Abell 2744 (z=0.308). Our strong- and weak-lensing analysis within the central region of the cluster, i.e., at R<1Mpc from the brightest cluster galaxy, reveals eight substructur
We identify four rare jellyfish galaxies in Hubble Space Telescope imagery of the major merger cluster Abell 2744. These galaxies harbor trails of star-forming knots and filaments which have formed in-situ in gas tails stripped from the parent galaxi
Context. As recently demonstrated, high-z submillimetre galaxies (SMGs) are the perfect background sample for tracing the mass density profiles of galaxies and clusters (baryonic and dark matter) and their time-evolution through gravitational lensing
The Hubble Frontier Fields (HFF) program combines the capabilities of the Hubble Space Telescope (HST) with the gravitational lensing of massive galaxy clusters to probe the distant Universe to an unprecedented depth. Here, we present the results of
We present a detailed strong lensing, weak lensing and X-ray analysis of Abell 2744 (z = 0.308), one of the most actively merging galaxy clusters known. It appears to have unleashed `dark, `ghost, `bullet and `stripped substructures, each ~10^14 sola