ﻻ يوجد ملخص باللغة العربية
Context. As recently demonstrated, high-z submillimetre galaxies (SMGs) are the perfect background sample for tracing the mass density profiles of galaxies and clusters (baryonic and dark matter) and their time-evolution through gravitational lensing. Their magnification bias, a weak gravitational lensing effect, is a powerful tool for constraining the free parameters of a halo occupation distribution (HOD) model and potentially also some of the main cosmological parameters. Aims. The aim of this work is to test the capability of the magnification bias produced on high-z SMGs as a cosmological probe. We exploit cross-correlation data to constrain not only astrophysical parameters ($M_{min}$, $M_1$, and $alpha$), but also some of the cosmological ones ($Omega_m$, $sigma_8$, and $H_0$) for this proof of concept. Methods. The measured cross-correlation function between a foreground sample of GAMA galaxies with spectroscopic redshifts in the range 0.2 < z < 0.8 and a background sample of H-ATLAS galaxies with photometric redshifts >1.2 is modelled using the traditional halo model description that depends on HOD and cosmological parameters. These parameters are then estimated by performing a Markov chain Monte Carlo analysis using different sets of priors to test the robustness of the results and to study the performance of this novel observable with the current set of data Results. With our current results, $Omega_m$ and $H_0$ cannot be well constrained. However, we can set a lower limit of >0.24 at 95% confidence level (CL) on $Omega_m$ and we see a slight trend towards $H_0>70$ values. For our constraints on $sigma_8$ we obtain only a tentative peak around 0.75, but an interesting upper limit of $sigma_8lesssim 1$ at 95% CL. We also study the possibility to derive better constraints by imposing more restrictive priors on the astrophysical parameters.
Aims. The main purpose of this work is to provide a method to derive tabulated observational constraints on the halo mass function (HMF) by studying the magnification bias effect on high-redshift submillimeter galaxies. Under the assumption of univer
The study of the magnification bias produced on high-redshift sub-millimetre galaxies by foreground galaxies through the analysis of the cross-correlation function was recently demonstrated as an interesting independent alternative to the weak-lensin
Recent high-resolution interferometric images of submillimetre galaxies (SMGs) reveal fascinatingly complex morphologies. This raises a number of questions: how does the relative orientation of a galaxy affect its observed submillimetre emission, and
A recent comparison of the massive galaxy cluster Abell 2744 with the Millennium XXL (MXXL) N-body simulation has hinted at a tension between the observed substructure distribution and the predictions of LambdaCDM. Follow-up investigations indicated
Gravitational lensing magnification modifies the observed spatial distribution of galaxies and can severely bias cosmological probes of large-scale structure if not accurately modelled. Standard approaches to modelling this magnification bias may not