ترغب بنشر مسار تعليمي؟ اضغط هنا

How big is the Sun: Solar diameter changes over time

95   0   0.0 ( 0 )
 نشر من قبل Alexander Kosovichev
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The measurement of the Suns diameter has been first tackled by the Greek astronomers from a geometric point of view. Their estimation of ~1800, although incorrect, was not truly called into question for several centuries. The first pioneer works for measuring the Suns diameter with an astrometric precision were made around the year 1660 by Gabriel Mouton, then by Picard and La Hire. A canonical value of the solar radius of 959.63 was adopted by Auwers in 1891. Despite considerable efforts during the second half of the XXth century, involving dedicated space instruments, no consensus was reached on this issue. However, with the advent of high sensitivity instruments on board satellites, such as the Michelson Doppler Imager (MDI) on Solar and Heliospheric Observatory (SoHO) and the Helioseismic and Magnetic Imager (HMI) aboard NASAs Solar Dynamics Observatory (SDO), it was possible to extract with an unprecedented accuracy the surface gravity oscillation f modes, over nearly two solar cycles, from 1996 to 2017. Their analysis in the range of angular degree l=140-300 shows that the so-called seismic radius exhibits a temporal variability in anti-phase with the solar activity. Even if the link between the two radii (photospheric and seismic) can be made only through modeling, such measurements provide an interesting alternative which led to a revision of the standard solar radius by the International Astronomical Union in 2015. This new look on such modern measurements of the Suns global changes from 1996 to 2017 gives a new way for peering into the solar interior, mainly to better understand the subsurface fields which play an important role in the implementation of the solar cycles.

قيم البحث

اقرأ أيضاً

Given the fact that Earth is so far the only place in the Milky Way galaxy known to harbor life, the question arises of whether the solar system is in any way special. To address this question, I compare the solar system to the many recently discover ed exoplanetary systems. I identify two main features that appear to distinguish the solar system from the majority of other systems: (i) the lack of super-Earths, (ii) the absence of close-in planets. I examine models for the formation of super-Earths, as well as models for the evolution of asteroid belts, the rate of asteroid impacts on Earth, and of snow lines, all of which may have some implications for the emergence and evolution of life on a terrestrial planet. Finally, I revisit an argument by Brandon Carter on the rarity of intelligent civilizations, and I review a few of the criticisms of this argument.
Helioseismic data for solar cycles 23 and 24 have shown unequivocally that solar dynamics changes with solar activity. Changes in solar structure have been more difficult to detect. Basu & Mandel (2004) had claimed that the then available data reveal ed changes in the HeII ionization zone of the Sun. The amount of change, however, indicated the need for larger than expected changes in the magnetic fields. Now that helioseismic data spanning two solar cycles are available, we have redone the analysis using improved fitting techniques. We find that there is indeed a change in the region around the HeII ionization zone that is correlated with activity. Since the data sets now cover two solar cycles, the time variation is easily discernible.
Reinhold et al. (Science, 1 May 2020, p. 518) provided two possible interpretations of measurements showing that the Sun is less active than other solar-like stars. We argue that one of those interpretations anticipates the observed differences betwe en the properties of their two stellar samples. This suggests that solar-like stars become permanently less variable beyond a specific evolutionary phase.
Solar energetic particles (SEPs), accelerated during solar eruptions, propagate in turbulent solar wind before being observed with in situ instruments. In order to interpret their origin through comparison with remote-sensing observations of the sola r eruption, we thus must deconvolve the transport effects due to the turbulent magnetic fields from the SEP observations. Recent research suggests that the SEP propagation is guided by the turbulent meandering of the magnetic fieldlines across the mean magnetic field. However, the lengthening of the distance the SEPs travel, due to the fieldline meandering, has so far not been included in SEP event analysis. This omission can cause significant errors in estimation of the release times of SEPs at the Sun. We investigate the distance travelled by the SEPs by considering them to propagate along fieldlines that meander around closed magnetic islands that are inherent in turbulent plasma. We introduce a fieldline randow walk model which takes into account the physical scales associated to the magnetic islands. Our method remedies the problem of the diffusion equation resulting in unrealistically short pathlengths, and the fractal dependence of the pathlength of random walk on the length of the random-walk step. We find that the pathlength from the Sun to 1 au can be below the nominal Parker spiral length for SEP events taking place at solar longitudes 45E to 60W, whereas the western and behind-the-limb particles can experience pathlengths longer than 2 au due to fieldline meandering.
In this paper, we detail the scientific objectives and outline a strawman payload of the SOLAR sail Investigation of the Sun (SOLARIS). The science objectives are to study the 3D structure of the solar magnetic and velocity field, the variation of to tal solar irradiance with latitude, and the structure of the corona. We show how we can meet these science objective using solar-sail technologies currently under development. We provide a tentative mission profile considering several trade-off approaches. We also provide a tentative mass budget breakdown and a perspective for a programmatic implementation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا