ترغب بنشر مسار تعليمي؟ اضغط هنا

Solar Cycle Related Changes in the Helium Ionization Zones of the Sun

68   0   0.0 ( 0 )
 نشر من قبل Sarbani Basu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Helioseismic data for solar cycles 23 and 24 have shown unequivocally that solar dynamics changes with solar activity. Changes in solar structure have been more difficult to detect. Basu & Mandel (2004) had claimed that the then available data revealed changes in the HeII ionization zone of the Sun. The amount of change, however, indicated the need for larger than expected changes in the magnetic fields. Now that helioseismic data spanning two solar cycles are available, we have redone the analysis using improved fitting techniques. We find that there is indeed a change in the region around the HeII ionization zone that is correlated with activity. Since the data sets now cover two solar cycles, the time variation is easily discernible.



قيم البحث

اقرأ أيضاً

We examine the frequency shifts in low-degree helioseismic modes from the Birmingham Solar-Oscillations Network (BiSON) covering the period from 1985 - 2016, and compare them with a number of global activity proxies well as a latitudinally-resolved m agnetic index. As well as looking at frequency shifts in different frequency bands, we look at a parametrization of the shift as a cubic function of frequency. While the shifts in the medium- and highfrequency bands are very well correlated with all of the activity indices (with the best correlation being with the 10.7 cm radio flux), we confirm earlier findings that there appears to have been a change in the frequency response to activity during solar cycle 23, and the low frequency shifts are less correlated with activity in the last two cycles than they were in Cycle 22. At the same time, the more recent cycles show a slight increase in their sensitivity to activity levels at medium and higher frequencies, perhaps because a greater proportion of activity is composed of weaker or more ephemeral regions. This lends weight to the speculation that a fundamental change in the nature of the solar dynamo may be in progress.
178 - K. J. Li , X. J. Shi , J. L. Xie 2013
Solar-cycle related variation of differential rotation is investigated through analyzing the rotation rates of magnetic fields, distributed along latitudes and varying with time at the time interval of August 1976 to April 2008. More pronounced diffe rentiation of rotation rates is found to appear at the ascending part of a Schwabe cycle than at the descending part on an average. The coefficient $B$ in the standard form of differential rotation, which represents the latitudinal gradient of rotation, may be divided into three parts within a Schwabe cycle. Part one spans from the start to the $4^{th}$ year of a Schwabe cycle, within which the absolute $B$ is approximately a constant or slightly fluctuates. Part two spans from the $4^{th}$ to the $7^{th}$ year, within which the absolute $B$ decreases. Part three spans from the $7^{th}$ year to the end, within which the absolute $B$ increases. Strong magnetic fields repress differentiation of rotation rates, so that rotation rates show less pronounced differentiation, but weak magnetic fields seem to just reflect differentiation of rotation rates. The solar-cycle related variation of solar differential rotation is inferred to the result of both the latitudinal migration of the surface torsional pattern and the repression of strong magnetic activity to differentiation of rotation rates.
We study the solar wind helium-to-hydrogen abundances ($A_mathrm{He}$) relationship to solar cycle onset. Using OMNI/Lo data, we show that $A_mathrm{He}$ increases prior to sunspot number (SSN) minima. We also identify a rapid depletion and recovery in $A_mathrm{He}$ that occurs directly prior to cycle onset. This $A_mathrm{He}$ Shutoff happens at approximately the same time across solar wind speeds ($v_mathrm{sw}$), implying that it is formed by a mechanism distinct from the one that drives $A_mathrm{He}$s solar cycle scale variation and $v_mathrm{sw}$-dependent phase offset with respect to SSN. The time between successive $A_mathrm{He}$ shutoffs is typically on the order of the corresponding solar cycle length. Using Brightpoint (BP) measurements to provide context, we infer that this shutoff is likely related to the overlap of adjacent solar cycles and the equatorial flux cancelation of the older, extended solar cycle during Solar Minima.
The measurement of the Suns diameter has been first tackled by the Greek astronomers from a geometric point of view. Their estimation of ~1800, although incorrect, was not truly called into question for several centuries. The first pioneer works for measuring the Suns diameter with an astrometric precision were made around the year 1660 by Gabriel Mouton, then by Picard and La Hire. A canonical value of the solar radius of 959.63 was adopted by Auwers in 1891. Despite considerable efforts during the second half of the XXth century, involving dedicated space instruments, no consensus was reached on this issue. However, with the advent of high sensitivity instruments on board satellites, such as the Michelson Doppler Imager (MDI) on Solar and Heliospheric Observatory (SoHO) and the Helioseismic and Magnetic Imager (HMI) aboard NASAs Solar Dynamics Observatory (SDO), it was possible to extract with an unprecedented accuracy the surface gravity oscillation f modes, over nearly two solar cycles, from 1996 to 2017. Their analysis in the range of angular degree l=140-300 shows that the so-called seismic radius exhibits a temporal variability in anti-phase with the solar activity. Even if the link between the two radii (photospheric and seismic) can be made only through modeling, such measurements provide an interesting alternative which led to a revision of the standard solar radius by the International Astronomical Union in 2015. This new look on such modern measurements of the Suns global changes from 1996 to 2017 gives a new way for peering into the solar interior, mainly to better understand the subsurface fields which play an important role in the implementation of the solar cycles.
Context. Large-scale equatorial Rossby modes have been observed on the Sun over the last two solar cycles. Aims. We investigate the impact of the time-varying zonal flows on the frequencies of Rossby modes. Methods. A first-order perturbation theory approach is used to obtain an expression for the expected shift in the mode frequencies due to perturbations in the internal rotation rate. Results. Using the time-varying rotation from helioseismic
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا