ﻻ يوجد ملخص باللغة العربية
We investigate 3-dimensional flagellar swimming in a fluid with a sparse network of stationary obstacles or fibers. The Brinkman equation is used to model the average fluid flow where a flow-dependent term, including a resistance parameter that is inversely proportional to the permeability, models the resistive effects of the fibers on the fluid. To solve for the local linear and angular velocities that are coupled to the flagellar motion, we extend the method of regularized Brinkmanlets to incorporate a Kirchhoff rod, discretized as point forces and torques along a centerline. Representing a flagellum as a Kirchhoff rod, we investigate emergent waveforms for different preferred strain and twist functions. Since the Kirchhoff rod formulation allows for out-of-plane motion, in addition to studying a preferred planar sine wave configuration, we also study the case with a preferred helical configuration. Our numerical method is validated by comparing results to asymptotic swimming speeds derived for an infinite-length cylinder propagating planar or helical waves. Similar to the asymptotic analysis for both planar and helical bending, we observe that with small amplitude bending, swimming speed is always enhanced relative to the case with no fibers in the fluid (Stokes) as the resistance parameter is increased....
We develop a one-dimensional model for the unsteady fluid--structure interaction (FSI) between a soft-walled microchannel and viscous fluid flow within it. A beam equation, which accounts for both transverse bending rigidity and nonlinear axial tensi
We study the deformation and motion of an erythrocyte in fluid flows via a lattice Boltzmann method. To this purpose, the bending rigidity and the elastic modulus of isotropic dilation are introduced and incorporated with the lattice Boltzmann simula
The flexibility of the bacterial flagellar hook is believed to have substantial consequences for microorganism locomotion. Using a simplified model of a rigid flagellum and a flexible hook, we show that the paths of axisymmetric cell bodies driven by
The Brinkman equation has found great popularity in modelling the interfacial flow between free fluid and a porous medium. However, it is still unclear how to determine an appropriate effective Brinkman viscosity without resolving the flow at the por
Motivated by the complex rheological behaviors observed in small/micro scale blood vessels, such as the Fahraeus effect, plasma-skimming, shear-thinning, etc., we develop a non-linear suspension model for blood. The viscosity is assumed to depend on