ﻻ يوجد ملخص باللغة العربية
We study the deformation and motion of an erythrocyte in fluid flows via a lattice Boltzmann method. To this purpose, the bending rigidity and the elastic modulus of isotropic dilation are introduced and incorporated with the lattice Boltzmann simulation, and the membrane-flow interactions on both sides of the membrane are carefully examined. We find that the static biconcave shape of an erythrocyte is quite stable and can effectively resist the pathological changes on their membrane. Further, our simulation results show that in shear flow, the erythrocyte will be highly flattened and undergo tank tread-like motion. This phenomenon has been observed by experiment very long time ago, but it has feazed the boundary integral and singularity methods up to the present. Because of its intrinsically parallel dynamics, this lattice Boltzmann method is expected to find wide applications for both single and multi-vesicles suspension as well as complex open membranes in various fluid flows for a wide range of Reynolds numbers.
In this paper, we propose a lattice Boltzmann (LB) model for the generalized coupled cross-diffusion-fluid system. Through the direct Taylor expansion method, the proposed LB model can correctly recover the macroscopic equations. The cross diffusion
The squirmer is a simple yet instructive model for microswimmers, which employs an effective slip velocity on the surface of a spherical swimmer to describe its self-propulsion. We solve the hydrodynamic flow problem with the lattice Boltzmann (LB) m
A lattice Boltzmann model is considered in which the speed of sound can be varied independently of the other parameters. The range over which the speed of sound can be varied is investigated and good agreement is found between simulations and theory.
Conventional lattice Boltzmann models for the simulation of fluid dynamics are restricted by an error in the stress tensor that is negligible only for vanishing flow velocity and at a singular value of the temperature. To that end, we propose a unifi
In this work we consider theoretically the problem of a Newtonian droplet moving in an otherwise quiescent infinite viscoelastic fluid under the influence of an externally applied temperature gradient. The outer fluid is modelled by the Oldroyd-B equ