ﻻ يوجد ملخص باللغة العربية
We report and characterize a white-light superflare on a previously undiscovered M dwarf detected by the ASAS-SN survey. Employing various color-magnitude and color-spectral type relationships, we estimate several stellar parameters, including the quiescent V-band magnitude, from which we derive a flare amplitude of $Delta V sim 10$. We determine an r-band absolute magnitude of $M_{r} = 11.4$, consistent with a mid-M dwarf, and an approximate distance to the source of $2.2$ kpc. Using classical-flare models, we infer a flare energy of $E_{V} simeq (4.1pm 2.2)times 10^{36}$ ergs, making this one of the strongest flares documented on an M dwarf.
We report the discovery and classification of SDSS~J053341.43+001434.1 (SDSS0533), an early-L dwarf first discovered during a powerful $Delta V < -11$ magnitude flare observed as part of the ASAS-SN survey. Optical and infrared spectroscopy indicate
As part of an All-Sky Automated Survey for SuperNovae (ASAS-SN) search for sources with large flux decrements, we discovered a transient where the quiescent, stellar source, ASASSN-V J192114.84+624950.8, rapidly decreased in flux by $sim55%$ ($sim0.9
As part of the Mega MUSCLES Hubble Space Telescope (HST) Treasury program, we obtained time-series ultraviolet spectroscopy of the M2.5V star, GJ~674. During the FUV monitoring observations, the target exhibited several small flares and one large fla
M dwarfs are known to flare on timescales from minutes to hours, with flux increases of several magnitudes in the blue/near-UV. These frequent, powerful events, which are caused by magnetic reconnection, will have a strong observational signature in
Context: Active M dwarfs frequently exhibit large flares, which can pose an existential threat to the habitability of any planet in orbit in addition to making said planets more difficult to detect. M dwarfs do not lose angular momentum as easily as