ﻻ يوجد ملخص باللغة العربية
The VIolation of Pauli exclusion principle -2 experiment, or VIP-2 experiment, at the Laboratori Nazionali del Gran Sasso searches for x-rays from copper atomic transition that are prohibited by the Pauli Exclusion Principle. Candidate direct violation events come from the transition of a $2p$ electron to the ground state that is already occupied by two electrons. From the first data taking campaign in 2016 of VIP-2 experiment, we determined a best upper limit of 3.4 $times$ 10$^{-29}$ for the probability that such a violation exists. Significant improvement in the control of the experimental systematics was also achieved, although not explicitly reflected in the improved upper limit. By introducing a simultaneous spectral fit of the signal and background data in the analysis, we succeeded in taking into account systematic errors that could not be evaluated previously in this type of measurements.
High-precision experiments have been done to test the Pauli exclusion principle (PEP) for electrons by searching for anomalous $K$-series X-rays from a Cu target supplied with electric current. With the highest sensitivity, the VIP (VIolation of Paul
The Pauli Exclusion Principle (PEP) is one of the basic principles of modern physics and, even if there are no compelling reasons to doubt its validity, it is still debated today because an intuitive, elementary explanation is still missing, and beca
The validity of the Pauli Exclusion Principle, a building block of Quantum Mechanics, is tested for electrons. The VIP (VIolation of Pauli exclusion principle) and its follow-up VIP-2 experiments at the Laboratori Nazionali del Gran Sasso search for
The VIP2 (VIolation of the Pauli Exclusion Principle) experiment at the Gran Sasso underground laboratory (LNGS) is searching for possible violations of standard quantum mechanics predictions in atoms at very high sensitivity. We investigate atomic t
The development of mathematically complete and consistent models solving the so-called measurement problem, strongly renewed the interest of the scientific community for the foundations of quantum mechanics, among these the Dynamical Reduction Models