ترغب بنشر مسار تعليمي؟ اضغط هنا

Testing the Pauli Exclusion Principle for electrons at LNGS

177   0   0.0 ( 0 )
 نشر من قبل Hexi Shi
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High-precision experiments have been done to test the Pauli exclusion principle (PEP) for electrons by searching for anomalous $K$-series X-rays from a Cu target supplied with electric current. With the highest sensitivity, the VIP (VIolation of Pauli Exclusion Principle) experiment set an upper limit at the level of $10^{-29}$ for the probability that an external electron captured by a Cu atom can make the transition from the 2$p$ state to a 1$s$ state already occupied by two electrons. In a follow-up experiment at Gran Sasso, we aim to increase the sensitivity by two orders of magnitude. We show proofs that the proposed improvement factor is realistic based on the results from recent performance tests of the detectors we did at Laboratori Nazionali di Frascati (LNF).



قيم البحث

اقرأ أيضاً

The VIP2 (VIolation of the Pauli Exclusion Principle) experiment at the Gran Sasso underground laboratory (LNGS) is searching for possible violations of standard quantum mechanics predictions in atoms at very high sensitivity. We investigate atomic t ransitions with precision X-ray spectroscopy in order to test the Pauli Exclusion Principle (PEP) and therefore the related spin-statistics theorem. We will present our experimental method for the search for anomalous (i.e. Pauli-forbidden) X-ray transitions in copper atoms, produced by new electrons, which could have tiny probability to undergo Pauli-forbidden transition to the ground state already occupied by two electrons. We will describe the VIP2 experimental setup, which is taking data at LNGS presently. The goal of VIP2 is to test the PEP for electrons with unprecedented accuracy, down to a limit in the probability that PEP is violated at the level of 10$^{-31}$. We will present current experimental results and discuss implications of a possible violation.
We are experimentally investigating possible violations of standard quantum mechanics predictions in the Gran Sasso underground laboratory in Italy. We test with high precision the Pauli Exclusion Principle and the collapse of the wave function (coll apse models). We present our method of searching for possible small violations of the Pauli Exclusion Principle (PEP) for electrons, through the search for anomalous X-ray transitions in copper atoms. These transitions are produced by new electrons (brought inside the copper bar by circulating current) which can have the possibility to undergo Pauli-forbidden transition to the 1s level already occupied by two electrons. We describe the VIP2 (VIolation of the Pauli Exclusion Principle) experimental data taking at the Gran Sasso underground laboratories. The goal of VIP2 is to test the PEP for electrons in agreement with the Messiah-Greenberg superselection rule with unprecedented accuracy, down to a limit in the probability that PEP is violated at the level of 10E-31. We show preliminary experimental results and discuss implications of a possible violation.
The VIolation of Pauli exclusion principle -2 experiment, or VIP-2 experiment, at the Laboratori Nazionali del Gran Sasso searches for x-rays from copper atomic transition that are prohibited by the Pauli Exclusion Principle. Candidate direct violati on events come from the transition of a $2p$ electron to the ground state that is already occupied by two electrons. From the first data taking campaign in 2016 of VIP-2 experiment, we determined a best upper limit of 3.4 $times$ 10$^{-29}$ for the probability that such a violation exists. Significant improvement in the control of the experimental systematics was also achieved, although not explicitly reflected in the improved upper limit. By introducing a simultaneous spectral fit of the signal and background data in the analysis, we succeeded in taking into account systematic errors that could not be evaluated previously in this type of measurements.
The validity of the Pauli Exclusion Principle, a building block of Quantum Mechanics, is tested for electrons. The VIP (VIolation of Pauli exclusion principle) and its follow-up VIP-2 experiments at the Laboratori Nazionali del Gran Sasso search for x-rays from copper atomic transition that are prohibited by the Pauli Exclusion Principle. The candidate events, if they exist, originate from the transition of a $2p$ orbit electron to the ground state which is already occupied by two electrons. The present limit on the probability for Pauli Exclusion Principle violation for electrons set by the VIP experiment is 4.7 $times$ 10 $^{-29}$. We report a first result from the VIP-2 experiment improving on the VIP limit, that solidifies the final goal to achieve a two order of magnitude gain in the long run.
The development of mathematically complete and consistent models solving the so-called measurement problem, strongly renewed the interest of the scientific community for the foundations of quantum mechanics, among these the Dynamical Reduction Models posses the unique characteristic to be experimentally testable. In the first part of the paper an upper limit on the reduction rate parameter of such models will be obtained, based on the analysis of the X-ray spectrum emitted by an isolated slab of germanium and measured by the IGEX experiment. The second part of the paper is devoted to present the results of the VIP (Violation of the Pauli exclusion principle) experiment and to describe its recent upgrade. The VIP experiment established a limit on the probability that the Pauli Exclusion Principle (PEP) is violated by electrons, using the very clean method of searching for PEP forbidden atomic transitions in copper.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا