ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for Food of Birds, Fish and Insects

69   0   0.0 ( 0 )
 نشر من قبل Rainer Klages
 تاريخ النشر 2018
  مجال البحث فيزياء علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This book chapter introduces to the problem to which extent search strategies of foraging biological organisms can be identified by statistical data analysis and mathematical modeling. A famous paradigm in this field is the Levy Flight Hypothesis: It states that under certain mathematical conditions Levy flights, which are a key concept in the theory of anomalous stochastic processes, provide an optimal search strategy. This hypothesis may be understood biologically as the claim that Levy flights represent an evolutionary adaptive optimal search strategy for foraging organisms. Another interpretation, however, is that Levy flights emerge from the interaction between a forager and a given (scale-free) distribution of food sources. These hypotheses are discussed controversially in the current literature. We give examples and counterexamples of experimental data and their analyses supporting and challenging them.



قيم البحث

اقرأ أيضاً

A combined dynamics consisting of Brownian motion and Levy flights is exhibited by a variety of biological systems performing search processes. Assessing the search reliability of ever locating the target and the search efficiency of doing so economi cally of such dynamics thus poses an important problem. Here we model this dynamics by a one-dimensional fractional Fokker-Planck equation combining unbiased Brownian motion and Levy flights. By solving this equation both analytically and numerically we show that the superposition of recurrent Brownian motion and Levy flights with stable exponent $alpha<1$, by itself implying zero probability of hitting a point on a line, lead to transient motion with finite probability of hitting any point on the line. We present results for the exact dependence of the values of both the search reliability and the search efficiency on the distance between the starting and target positions as well as the choice of the scaling exponent $alpha$ of the Levy flight component.
Inferring the processes underlying the emergence of observed patterns is a key challenge in theoretical ecology. Much effort has been made in the past decades to collect extensive and detailed information about the spatial distribution of tropical ra inforests, as demonstrated, e.g., in the 50 ha tropical forest plot on Barro Colorado Island, Panama. These kind of plots have been crucial to shed light on diverse qualitative features, emerging both at the single-species or the community level, like the spatial aggregation or clustering at short scales. Here, we build on the progress made in the study of the density correlation functions applied to biological systems, focusing on the importance of accurately defining the borders of the set of trees, and removing the induced biases. We also pinpoint the importance of combining the study of correlations with the scale dependence of fluctuations in density, which are linked to the well known empirical Taylors power law. Density correlations and fluctuations, in conjunction, provide an unique opportunity to interpret the behaviors and possibly to allow comparisons between data and models. We also study such quantities in models of spatial patterns and, in particular, we find that a spatially explicit neutral model generates patterns with many qualitative features in common with the empirical ones.
67 - V.V. Palyulin 2017
We address the generic problem of random search for a point-like target on a line. Using the measures of search reliability and efficiency to quantify the random search quality, we compare Brownian search with Levy search based on long-tailed jump le ngth distributions. We then compare these results with a search process combined of two different long-tailed jump length distributions. Moreover, we study the case of multiple targets located by a Levy searcher.
The pace and unpredictability of evolution are critically relevant in a variety of modern challenges: combating drug resistance in pathogens and cancer, understanding how species respond to environmental perturbations like climate change, and develop ing artificial selection approaches for agriculture. Great progress has been made in quantitative modeling of evolution using fitness landscapes, allowing a degree of prediction for future evolutionary histories. Yet fine-grained control of the speed and the distributions of these trajectories remains elusive. We propose an approach to achieve this using ideas originally developed in a completely different context: counterdiabatic driving to control the behavior of quantum states for applications like quantum computing and manipulating ultra-cold atoms. Implementing these ideas for the first time in a biological context, we show how a set of external control parameters (i.e. varying drug concentrations / types, temperature, nutrients) can guide the probability distribution of genotypes in a population along a specified path and time interval. This level of control, allowing empirical optimization of evolutionary speed and trajectories, has myriad potential applications, from enhancing adaptive therapies for diseases, to the development of thermotolerant crops in preparation for climate change, to accelerating bioengineering methods built on evolutionary models, like directed evolution of biomolecules.
Motivated by studies on the recurrent properties of animal and human mobility, we introduce a path-dependent random walk model with long range memory for which not only the mean square displacement (MSD) can be obtained exactly in the asymptotic limi t, but also the propagator. The model consists of a random walker on a lattice, which, at a constant rate, stochastically relocates at a site occupied at some earlier time. This time in the past is chosen randomly according to a memory kernel, whose temporal decay can be varied via an exponent parameter. In the weakly non-Markovian regime, memory reduces the diffusion coefficient from the bare value. When the mean backward jump in time diverges, the diffusion coefficient vanishes and a transition to an anomalous subdiffusive regime occurs. Paradoxically, at the transition, the process is an anti-correlated Levy flight. Although in the subdiffusive regime the model exhibits some features of the continuous time random walk with infinite mean waiting time, it belongs to another universality class. If memory is very long-ranged, a second transition takes place to a regime characterized by a logarithmic growth of the MSD with time. In this case the process is asymptotically Gaussian and effectively described as a scaled Brownian motion with a diffusion coefficient decaying as 1/t.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا