ﻻ يوجد ملخص باللغة العربية
The pace and unpredictability of evolution are critically relevant in a variety of modern challenges: combating drug resistance in pathogens and cancer, understanding how species respond to environmental perturbations like climate change, and developing artificial selection approaches for agriculture. Great progress has been made in quantitative modeling of evolution using fitness landscapes, allowing a degree of prediction for future evolutionary histories. Yet fine-grained control of the speed and the distributions of these trajectories remains elusive. We propose an approach to achieve this using ideas originally developed in a completely different context: counterdiabatic driving to control the behavior of quantum states for applications like quantum computing and manipulating ultra-cold atoms. Implementing these ideas for the first time in a biological context, we show how a set of external control parameters (i.e. varying drug concentrations / types, temperature, nutrients) can guide the probability distribution of genotypes in a population along a specified path and time interval. This level of control, allowing empirical optimization of evolutionary speed and trajectories, has myriad potential applications, from enhancing adaptive therapies for diseases, to the development of thermotolerant crops in preparation for climate change, to accelerating bioengineering methods built on evolutionary models, like directed evolution of biomolecules.
Motivated by studies on the recurrent properties of animal and human mobility, we introduce a path-dependent random walk model with long range memory for which not only the mean square displacement (MSD) can be obtained exactly in the asymptotic limi
The transmission and evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are of paramount importance to the controlling and combating of coronavirus disease 2019 (COVID-19) pandemic. Currently, near 15,000 SARS-CoV-2 single muta
Strongly non-Markovian random walks offer a promising modeling framework for understanding animal and human mobility, yet, few analytical results are available for these processes. Here we solve exactly a model with long range memory where a random w
We study simple stochastic scenarios, based on birth-and-death Markovian processes, that describe populations with Allee effect, to account for the role of demographic stochasticity. In the mean-field deterministic limit we recover well-known determi
A combined dynamics consisting of Brownian motion and Levy flights is exhibited by a variety of biological systems performing search processes. Assessing the search reliability of ever locating the target and the search efficiency of doing so economi