ﻻ يوجد ملخص باللغة العربية
Poly (triazine imide) (PTI) is a material belonging to the group of carbon nitrides and has shown to have competitive properties compared to melon or g-C3N4, especially in photocatalysis. As most of the carbon nitrides PTI is usually synthesized by thermal or hydrothermal approaches. We present and discuss an alternative synthesis for PTI which exhibits a pH dependent solubility in aqueous solutions. This synthesis is based on the formation of radicals during electrolysis of an aqueous melamine solution, coupling of resulting melamine radicals and the final formation of PTI. We applied different characterization techniques to identify PTI as the product of this reaction and report the first liquid state NMR experiments on a triazine-based carbon nitride. We show that PTI has a relatively high specific surface area and a pH dependent adsorption of charged molecules. This tunable adsorption has a significant influence on the photocatalytic properties of PTI which we investigated in dye degradation experiments.
The widely used crystal structures for both heptazine-based and triazine-based two-dimensional (2D) graphitic carbon nitride (g-C$_3$N$_4$) are the flat P-6m2 configurations. However, the experimentally synthesized 2D g-C$_3$N$_4$ possess thickness r
The peculiar electronic and optical properties of covalent organic frameworks (COFs) are largely determined by protonation, a ubiquitous phenomenon in the solution environment in which they are synthesized. The resulting effects are non-trivial and a
Bulk amorphous materials have been studied extensively and are widely used, yet their atomic arrangement remains an open issue. Although they are generally believed to be Zachariasen continuous random networks, recent experimental evidence favours th
We report the design, synthesis, structure, and properties of two complex layered phosphide nitrides, $Ak$Th$_2$Mn$_4$P$_4$N$_2$ ($Ak$ = Rb, Cs), which contain anti-fluorite-type [Mn$_2$P$_2$] bilayers separated by fluorite-type [Th2N2] layers as a r
The nitride semiconductor materials GaN, AlN, and InN, and their alloys and heterostructures have been investigated extensively in the last 3 decades, leading to several technologically successful photonic and electronic devices. Just over the past f