ترغب بنشر مسار تعليمي؟ اضغط هنا

The New Nitrides: Layered, Ferroelectric, Magnetic, Metallic and Superconducting Nitrides to Boost the GaN Photonics and Electronics Eco-System

61   0   0.0 ( 0 )
 نشر من قبل Debdeep Jena
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The nitride semiconductor materials GaN, AlN, and InN, and their alloys and heterostructures have been investigated extensively in the last 3 decades, leading to several technologically successful photonic and electronic devices. Just over the past few years, a number of new nitride materials have emerged with exciting photonic, electronic, and magnetic properties. Some examples are 2D and layered hBN and the III-V diamond analog cBN, the transition metal nitrides ScN, YN, and their alloys (e.g. ferroelectric ScAlN), piezomagnetic GaMnN, ferrimagnetic Mn4N, and epitaxial superconductor/semiconductor NbN/GaN heterojunctions. This article reviews the fascinating and emerging physics and science of these new nitride materials. It also discusses their potential applications in future generations of devices that take advantage of the photonic and electronic devices eco-system based on transistors, light-emitting diodes, and lasers that have already been created by the nitride semiconductors.



قيم البحث

اقرأ أيضاً

We report on the deposition of gallium oxide using microwave irradiation technique on III nitride epi layers. We also report on the first demonstration of a gallium oxide device, a visible blind deep UV detector, with GaN based heterostructure as the substrate. The film deposited in the solution medium, at less than 200 C, using a metalorganic precursor, was nanocrystalline. XRD confirms that as deposited film when annealed at high temperature turns polycrystalline beta gallium oxide. SEM shows the as deposited film to be uniform, with a surface roughness of 4 to 5 nm, as revealed by AFM. Interdigitated metal semiconductor metal MSM devices with Ni,Au contact exhibited peak spectral response at 230 nm and a good visible rejection ratio. This first demonstration of a deep-UV detector on beta-gallium oxide on III nitride stack is expected to open up new possibilities of functional and physical integration of beta gallium oxide and GaN material families towards enabling next generation high performance devices by exciting band and heterostructure engineering.
Exploratory synthesis in novel chemical spaces is the essence of solid-state chemistry. However, uncharted chemical spaces can be difficult to navigate, especially when materials synthesis is challenging. Nitrides represent one such space, where stri ngent synthesis constraints have limited the exploration of this important class of functional materials. Here, we employ a suite of computational materials discovery and informatics tools to construct a large stability map of the inorganic ternary metal nitrides. Our map clusters the ternary nitrides into chemical families with distinct stability and metastability, and highlights hundreds of promising new ternary nitride spaces for experimental investigation--from which we experimentally realized 7 new Zn- and Mg-based ternary nitrides. By extracting the mixed metallicity, ionicity, and covalency of solid-state bonding from the DFT-computed electron density, we reveal the complex interplay between chemistry, composition, and electronic structure in governing large-scale stability trends in ternary nitride materials.
Poly (triazine imide) (PTI) is a material belonging to the group of carbon nitrides and has shown to have competitive properties compared to melon or g-C3N4, especially in photocatalysis. As most of the carbon nitrides PTI is usually synthesized by t hermal or hydrothermal approaches. We present and discuss an alternative synthesis for PTI which exhibits a pH dependent solubility in aqueous solutions. This synthesis is based on the formation of radicals during electrolysis of an aqueous melamine solution, coupling of resulting melamine radicals and the final formation of PTI. We applied different characterization techniques to identify PTI as the product of this reaction and report the first liquid state NMR experiments on a triazine-based carbon nitride. We show that PTI has a relatively high specific surface area and a pH dependent adsorption of charged molecules. This tunable adsorption has a significant influence on the photocatalytic properties of PTI which we investigated in dye degradation experiments.
The electronic structure of nanolaminate Ti2AlN and TiN thin films has been investigated by bulk-sensitive soft x-ray emission spectroscopy. The measured Ti L, N K, Al L1 and Al L2,3 emission spectra are compared with calculated spectra using ab init io density-functional theory including dipole transition matrix elements. Three different types of bond regions are identified; a relatively weak Ti 3d - Al 3p bonding between -1 and -2 eV below the Fermi level, and Ti 3d - N 2p and Ti 3d - N 2s bonding which are deeper in energy observed at -4.8 eV and -15 eV below the Fermi level, respectively. A strongly modified spectral shape of 3s states of Al L2,3 emission from Ti2AlN in comparison to pure Al metal is found, which reflects the Ti 3d - Al 3p hybridization observed in the Al L1 emission. The differences between the electronic and crystal structures of Ti2AlN and TiN are discussed in relation to the intercalated Al layers of the former compound and the change of the materials properties in comparison to the isostructural carbides.
ABX3 perovskites have attracted intensive research interest in recent years due to their versatile composition and superior optoelectronic properties. Their counterparts, antiperovskites (X3BA), can be viewed as electronically inverted perovskite der ivatives, but they have not been extensively studied for solar applications. Therefore, understanding their composition-property relationships is crucial for future photovoltaic application. Here, taking six antiperovskite nitrides X3NA (X2+ = Mg, Ca, Sr; A3- = P, As, Sb, Bi) as an example, we investigate the effect of X- and A-sites on the electronic, dielectric, and mechanical properties from the viewpoint of the first-principles calculations. Our calculation results show that the X-site dominates the conduction band, and the A-site has a non-negligible contribution to the band edge. These findings are completely different from traditional halide perovskites. Interestingly, when changing X- or A-site elements, a linear relationship between the tolerance factor and physical quantities, such as electronic parameters, dielectric constants, and Youngs modulus, is observed. By designing the Mg3NAs1-xBix alloys, we further verify this power of the linear relationship, which provides a predictive guidance for experimental preparation of antiperovskite alloys. Finally, we make a comprehensive comparison between the antiperovskite nitrides and conventional halide perovskites for pointing out the future device applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا