ﻻ يوجد ملخص باللغة العربية
A one-to-one correspondence between the infinitesimal motions of bar-joint frameworks in $mathbb{R}^d$ and those in $mathbb{S}^d$ is a classical observation by Pogorelov, and further connections among different rigidity models in various different spaces have been extensively studied. In this paper, we shall extend this line of research to include the infinitesimal rigidity of frameworks consisting of points and hyperplanes. This enables us to understand correspondences between point-hyperplane rigidity, classical bar-joint rigidity, and scene analysis. Among other results, we derive a combinatorial characterization of graphs that can be realized as infinitesimally rigid frameworks in the plane with a given set of points collinear. This extends a result by Jackson and Jord{a}n, which deals with the case when three points are collinear.
We consider the problem of characterising the generic rigidity of bar-joint frameworks in $mathbb{R}^d$ in which each vertex is constrained to lie in a given affine subspace. The special case when $d=2$ was previously solved by I. Streinu and L. Ther
A linearly constrained framework in $mathbb{R}^d$ is a point configuration together with a system of constraints which fixes the distances between some pairs of points and additionally restricts some of the points to lie in given affine subspaces. It
We show that a generic framework $(G,p)$ on the cylinder is globally rigid if and only if $G$ is a complete graph on at most four vertices or $G$ is both redundantly rigid and $2$-connected. To prove the theorem we also derive a new recursive constru
We consider the problem of characterising the generic rigidity of bar-joint frameworks in $mathbb{R}^d$ in which each vertex is constrained to lie in a given affine subspace. The special case when $d=2$ was previously solved by I. Streinu and L. Ther
We define and study slider-pinning rigidity, giving a complete combinatorial characterization. This is done via direction-slider networks, which are a generalization of Whiteleys direction networks.