ترغب بنشر مسار تعليمي؟ اضغط هنا

Spontaneous symmetry breaking and trapping of temporal Kerr cavity solitons by pulsed or amplitude modulated driving fields

68   0   0.0 ( 0 )
 نشر من قبل Ian Hendry
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on a systematic study of temporal Kerr cavity soliton dynamics in the presence of pulsed or amplitude modulated driving fields. In stark contrast to the more extensively studied case of phase modulations, we find that Kerr cavity solitons are not always attracted to maxima or minima of driving field amplitude inhomogeneities. Instead, we find that the solitons are attracted to temporal positions associated with specific driving field values that depend only on the cavity detuning. We describe our findings in light of a spontaneous symmetry breaking instability that physically ensues from a competition between coherent driving and nonlinear propagation effects. In addition to identifying a new type of Kerr cavity soliton behaviour, our results provide valuable insights to practical cavity configurations employing pulsed or amplitude modulated driving fields.

قيم البحث

اقرأ أيضاً

We experimentally and numerically study the use of intensity modulation for the controlled addressing of temporal Kerr cavity solitons. Using a coherently driven fiber ring resonator, we demonstrate that a single temporally broad intensity modulation pulse applied on the cavity driving field permits systematic and efficient writing and erasing of ultrashort cavity solitons. We use numerical simulations based on the mean-field Lugiato-Lefever model to investigate the addressing dynamics, and present a simple physical description of the underlying physics.
Optical tweezers use laser light to trap and move microscopic particles in space. Here we demonstrate a similar control over ultrashort light pulses, but in time. Our experiment involves temporal cavity solitons that are stored in a passive loop of o ptical fiber pumped by a continuous-wave holding laser beam. The cavity solitons are trapped into specific time slots through a phase-modulation of the holding beam, and moved around in time by manipulating the phase profile. We report both continuous and discrete manipulations of the temporal positions of picosecond light pulses, with the ability to simultaneously and independently control several pulses within a train. We also study the transient drifting dynamics and show complete agreement with theoretical predictions. Our study demonstrates how the unique particle-like characteristics of cavity solitons can be leveraged to achieve unprecedented control over light. These results could have significant ramifications for optical information processing.
Dissipative solitons are self-localised structures that can persist indefinitely in open systems characterised by continual exchange of energy and/or matter with the environment. They play a key role in photonics, underpinning technologies from mode- locked lasers to microresonator optical frequency combs. Here we report on the first experimental observations of spontaneous symmetry breaking of dissipative optical solitons. Our experiments are performed in a passive, coherently driven nonlinear optical ring resonator, where dissipative solitons arise in the form of persisting pulses of light known as Kerr cavity solitons. We engineer balance between two orthogonal polarization modes of the resonator, and show that despite perfectly symmetric operating conditions, the solitons supported by the system can spontaneously break their symmetry, giving rise to two distinct but co-existing vectorial solitons with mirror-like, asymmetric polarization states. We also show that judiciously applied perturbations allow for deterministic switching between the two symmetry-broken dissipative soliton states, thus enabling all-optical manipulation of topological bit sequences. Our experimental observations are in excellent agreement with numerical simulations and theoretical analyses. Besides delivering fundamental insights at the intersection of multi-mode nonlinear optical resonators, dissipative structures, and spontaneous symmetry breaking, our work provides new avenues for the storage, coding, and manipulation of light.
Temporal cavity solitons (CSs) are persisting pulses of light that can manifest themselves in continuously driven passive resonators, such as macroscopic fiber ring cavities and monolithic microresonators. Experiments so far have demonstrated two tec hniques for their excitation, yet both possess drawbacks in the form of system complexity or lack of control over soliton positioning. Here we experimentally demonstrate a new CS writing scheme that alleviates these deficiencies. Specifically, we show that temporal CSs can be excited at arbitrary positions through direct phase modulation of the cavity driving field, and that this technique also allows existing CSs to be selectively erased. Our results constitute the first experimental demonstration of temporal cavity soliton excitation via direct phase modulation, as well as their selective erasure (by any means). These advances reduce the complexity of CS excitation and could lead to controlled pulse generation in monolithic microresonators.
130 - Zongda Li , Yiqing Xu , Caleb Todd 2021
Dissipative Kerr cavity solitons (CSs) are persisting pulses of light that manifest themselves in driven optical resonators and that have attracted significant attention over the last decade. Whilst the vast majority of studies have revolved around c onditions where the resonator exhibits strong anomalous dispersion, recent studies have shown that solitons with unique characteristics and dynamics can arise under conditions of near-zero-dispersion driving. Here we report on experimental studies of the existence and stability dynamics of Kerr CSs under such conditions. In particular, we experimentally probe the solitons range of existence and examine how their breathing instabilities are modified when group-velocity dispersion is close to zero, such that higher-order dispersion terms play a significant role. On the one hand, our experiments directly confirm earlier theoretical works that predict (i) breathing near-zero-dispersion solitons to emit polychromatic dispersive radiation, and (ii) that higher-order dispersion can extend the range over which the solitons are stable. On the other hand, our experiments also reveal a novel cross-over scenario, whereby the influence of higher-order dispersion changes from stabilising to destabilising. Our comprehensive experiments sample soliton dynamics both in the normal and anomalous dispersion regimes, and our results are in good agreement with numerical simulations and theoretical predictions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا