ﻻ يوجد ملخص باللغة العربية
We experimentally and numerically study the use of intensity modulation for the controlled addressing of temporal Kerr cavity solitons. Using a coherently driven fiber ring resonator, we demonstrate that a single temporally broad intensity modulation pulse applied on the cavity driving field permits systematic and efficient writing and erasing of ultrashort cavity solitons. We use numerical simulations based on the mean-field Lugiato-Lefever model to investigate the addressing dynamics, and present a simple physical description of the underlying physics.
Temporal cavity solitons (CSs) are persisting pulses of light that can manifest themselves in continuously driven passive resonators, such as macroscopic fiber ring cavities and monolithic microresonators. Experiments so far have demonstrated two tec
We report on a systematic study of temporal Kerr cavity soliton dynamics in the presence of pulsed or amplitude modulated driving fields. In stark contrast to the more extensively studied case of phase modulations, we find that Kerr cavity solitons a
We report on the experimental observation of bunching dynamics with temporal cavity solitons in a continuously-driven passive fibre resonator. Specifically, we excite a large number of ultrafast cavity solitons with random temporal separations, and o
Temporal cavity solitons in ring microresonators provide broad and controllable generation of frequency combs with applications in frequency standards and precise atomic clocks. Three level media in the {Lambda} configuration inside microresonators d
Dissipative Kerr cavity solitons (CSs) are persisting pulses of light that manifest themselves in driven optical resonators and that have attracted significant attention over the last decade. Whilst the vast majority of studies have revolved around c