ﻻ يوجد ملخص باللغة العربية
In this paper, a three-dimensional numerical solver is developed for suspensions of rigid and soft particles and droplets in viscoelastic and elastoviscoplastic (EVP) fluids. The presented algorithm is designed to allow for the first time three-dimensional simulations of inertial and turbulent EVP fluids with a large number particles and droplets. This is achieved by combining fast and highly scalable methods such as an FFT-based pressure solver, with the evolution equation for non-Newtonian (including elastoviscoplastic) stresses. In this flexible computational framework, the fluid can be modelled by either Oldroyd-B, neo-Hookean, FENE-P, and Saramito EVP models, and the additional equations for the non-Newtonian stresses are fully coupled with the flow. The rigid particles are discretized on a moving Lagrangian grid while the flow equations are solved on a fixed Eulerian grid. The solid particles are represented by an Immersed Boundary method (IBM) with a computationally efficient direct forcing method allowing simulations of a large numbers of particles. The immersed boundary force is computed at the particle surface and then included in the momentum equations as a body force. The droplets and soft particles on the other hand are simulated in a fully Eulerian framework, the former with a level-set method to capture the moving interface and the latter with an indicator function. The solver is first validated for various benchmark single-phase and two-phase elastoviscoplastic flow problems through comparison with data from the literature. Finally, we present new results on the dynamics of a buoyancy-driven drop in an elastoviscoplastic fluid.
A series of benchmarks based on the physical situation of phase inversion between two immiscible liquids is presented. These benchmarks aim at progressing toward the direct numerical simulation of two-phase flows. Several CFD codes developed in Frenc
The flow of viscoelastic fluids in porous media is encountered in many practical applications, such as in the enhanced oil recovery process or in the groundwater remediation. Once the flow rate exceeds a critical value in such flows, an elastic insta
The flow of viscoelastic fluids in channels and pipes remain poorly understood, particularly at low Reynolds numbers. Here, we investigate the flow of polymeric solutions in straight channels using pressure measurements and particle tracking. The law
With the aim of efficiently simulating three-dimensional multiphase turbulent flows with a phase-field method, we propose a new discretization scheme for the biharmonic term (the 4th-order derivative term) of the Cahn-Hilliard equation. This novel sc
This work presents a new multiphase SPH model that includes the shifting algorithm and a variable smoothing length formalism to simulate multi-phase flows with accuracy and proper interphase management. The implementation was performed in the DualSPH