ﻻ يوجد ملخص باللغة العربية
A series of benchmarks based on the physical situation of phase inversion between two immiscible liquids is presented. These benchmarks aim at progressing toward the direct numerical simulation of two-phase flows. Several CFD codes developed in French laboratories and using either Volume-of-Fluid or Level-Set interface tracking methods are used to provide physical solutions of the benchmarks, convergence studies and code comparisons. Two typical configurations are retained, with integral scale Reynolds numbers of 13.700 and 433.000, respectively. The physics of the problem are probed through macroscopic quantities such as potential and kinetic energies, or enstrophy. In addition, scaling laws for the temporal decay of the kinetic energy are derived to check the physical relevance of the simulations. Finally the droplet size distribution is probed. Additional test problems are also reported to estimate the influence of viscous effects in the vicinity of the interface.
With the aim of efficiently simulating three-dimensional multiphase turbulent flows with a phase-field method, we propose a new discretization scheme for the biharmonic term (the 4th-order derivative term) of the Cahn-Hilliard equation. This novel sc
A hybrid computational method coupling the lattice-Boltzmann (LB) method and a Langevin-dynamics (LD) method is developed to simulate nanoscale particle and polymer (NPP) suspensions in the presence of both thermal fluctuation and long-range many-bod
We present a hybrid spectral element-Fourier spectral method for solving the coupled system of Navier-Stokes and Cahn-Hilliard equations to simulate wall-bounded two-phase flows in a three-dimensional domain which is homogeneous in at least one direc
In this paper, a three-dimensional numerical solver is developed for suspensions of rigid and soft particles and droplets in viscoelastic and elastoviscoplastic (EVP) fluids. The presented algorithm is designed to allow for the first time three-dimen
The squirmer is a simple yet instructive model for microswimmers, which employs an effective slip velocity on the surface of a spherical swimmer to describe its self-propulsion. We solve the hydrodynamic flow problem with the lattice Boltzmann (LB) m