ترغب بنشر مسار تعليمي؟ اضغط هنا

Entropy of Higher Dimensional Charged Gauss-Bonnet Black hole in de Sitter Space

134   0   0.0 ( 0 )
 نشر من قبل Huaifan Li
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The fundamental equation of the thermodynamic system gives the relation between internal energy, entropy and volume of two adjacent equilibrium states. Taking higher dimensional charged Gauss-Bonnet black hole in de Sitter space as a thermodynamic system, the state parameters have to meet the fundamental equation of thermodynamics. We introduce the effective thermodynamic quantities to describe the black hole in de Sitter space. Considering that in the lukewarm case the temperature of the black hole horizon is equal to that of the cosmological horizon, the effective temperature of spacetime is the same, we conjecture that the effective temperature has the same value. In this way, we can obtain the entropy formula of spacetime by solving the differential equation. We find that the total entropy contain an extra terms besides the sum of the entropies of the two horizons. The corrected terms of the entropy is a function of horizon radius ratio, and is independent of the charge of the spacetime.

قيم البحث

اقرأ أيضاً

We study the instability of the charged Gauss-Bonnet de Sitter black holes under gravito-electromagnetic perturbations. We adopt two criteria to search for an instability of the scalar type perturbations, including the local instability criterion bas ed on the $AdS_2$ Breitenl{o}hner-Freedman (BF) bound at extremality and the dynamical instability via quasinormal modes by full numerical analysis. We uncover the gravitational instability in five spacetime dimensions and above, and construct the complete parameter space in terms of the ratio of event and cosmological horizons and the Gauss-Bonnet coupling. We show that the BF bound violation is a sufficient but not necessary condition for the presence of dynamical instability. While the physical origin of the instability without the Gauss-Bonnet term has been argued to be from the $AdS_2$ BF bound violation, our analysis suggests that the BF bound violation can not account for all physical origin of the instability for the charged Gauss-Bonnet black holes.
193 - Shao-Wen Wei , Yu-Xiao Liu 2021
Understanding black hole microstructure via the thermodynamic geometry can provide us with more deeper insight into black hole thermodynamics in modified gravities. In this paper, we study the black hole phase transition and Ruppeiner geometry for th e $d$-dimensional charged Gauss-Bonnet anti-de Sitter black holes. The results show that the small-large black hole phase transition is universal in this gravity. By reducing the thermodynamic quantities with the black hole charge, we clearly exhibit the phase diagrams in different parameter spaces. Of particular interest is that the radius of the black hole horizon can act as the order parameter to characterize the black hole phase transition. We also disclose that different from the five-dimensional neutral black holes, the charged ones allow the repulsive interaction among its microstructure for small black hole of higher temperature. Another significant difference between them is that the microscopic interaction changes during the small-large black hole phase transition for the charged case, where the black hole microstructure undergoes a sudden change. These results are helpful for peeking into the microstructure of charged black holes in the Gauss-Bonnet gravity.
The basic equations of the thermodynamic system give the relationship between the internal energy, entropy and volume of two neighboring equilibrium states. By using the functional relationship between the state parameters in the basic equation, we g ive the differential equation satisfied by the entropy of spacetime. We can obtain the expression of the entropy by solving the differential equationy. This expression is the sum of entropy corresponding to the two event horizons and the interaction term. The interaction term is a function of the ratio of the locations of the black hole horizon and the cosmological horizon. The entropic force, which is strikingly similar to the Lennard-Jones force between particles, varies with the ratio of the two event horizons. The discovery of this phenomenon makes us realize that the entropic force between the two horizons may be one of the candidates to promote the expansion of the universe.
We investigate the thermodynamics of Gauss-Bonnet black holes in asymptotically de Sitter spacetimes embedded in an isothermal cavity, via a Euclidean action approach. We consider both charged and uncharged black holes, working in the extended phase space where the cosmological constant is treated as a thermodynamic pressure. We examine the phase structure of these black holes through their free energy. In the uncharged case, we find both Hawking-Page and small-to-large black hole phase transitions, whose character depends on the sign of the Gauss-Bonnet coupling. In the charged case, we demonstrate the presence of a swallowtube, signaling a compact region in phase space where a small-to-large black hole transition occurs.
We study the linear instability of the charged massless scalar perturbation in regularized 4D charged Einstein-Gauss-Bonnet-AdS black holes by exploring the quasinormal modes. We find that the linear instability is triggered by superradiance. The cha rged massless scalar perturbation becomes more unstable when increasing the Gauss-Bonnet coupling constant or the black hole charge. Meanwhile, decreasing} the AdS radius will make the charged massless scalar perturbation} more stable. The stable region in parameter space $(alpha,Q,Lambda)$ is given. Moreover, we find that the charged massless scalar perturbation is more unstable for larger scalar charge. The modes of multipoles are more stable than that of the monopole.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا