ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of hedgehog skyrmions in sub-100 nm soft magnetic nanodots

71   0   0.0 ( 0 )
 نشر من قبل Miriam Jaafar Dr
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic skyrmions are nanometric spin textures of outstanding potential for spintronic applications due to unique features governed by their non-trivial topology. It is well known that skyrmions of definite chirality are stabilized by the Dzyaloshinskii-Moriya exchange interaction (DMI) in bulk non-centrosimmetric materials or ultrathin films with strong spin-orbit coupling in the interface. In this work, we report on the detection of magnetic hedgehog-skyrmions at room temperature in confined systems with neither DMI nor perpendicular magnetic anisotropy. We show that soft magnetic (permalloy) nanodots are able to host non- chiral hedgehog skyrmions that can be further stabilized by the magnetic field arising from the Magnetic Force Microscopy probe. Analytical calculations and micromagnetic simulations confirmed the existence of metastable Neel skyrmions in permalloy nanodots even without external stimuli in a certain size range. Our work implies the existence of a new degree of freedom to create and manipulate skyrmions in soft nanodots. The stabilization of skyrmions in soft magnetic materials opens a possibility to study the skymion magnetization dynamics otherwise limited due to the large damping constant coming from the high spin-orbit coupling in materials with high magnetic anisotropy.

قيم البحث

اقرأ أيضاً

Magnetic skyrmions are chiral spin structures that have recently been observed at room temperature (RT) in multilayer thin films. Their topological stability should enable high scalability in confined geometries - a sought-after attribute for device applications. While umpteen theoretical predictions have been made regarding the phenomenology of sub-100 nm skyrmions confined in dots, in practice their formation in the absence of an external magnetic field and evolution with confinement remain to be established. Here we demonstrate the confinement-induced stabilization of sub-100 nm RT skyrmions at zero field (ZF) in Ir/Fe(x)/Co(y)/Pt nanodots over a wide range of magnetic and geometric parameters. The ZF skyrmion size can be as small as ~50 nm, and varies by a factor of 4 with dot size and magnetic parameters. Crucially, skyrmions with varying thermodynamic stability exhibit markedly different confinement phenomenologies. These results establish a comprehensive foundation for skyrmion phenomenology in nanostructures, and provide immediate directions for exploiting their properties in nanoscale devices.
Sub-100 nm nanomagnets not only are technologically important, but also exhibit complex magnetization reversal behaviors as their dimensions are comparable to typical magnetic domain wall widths. Here we capture magnetic fingerprints of 1 billion Fe nanodots as they undergo a single domain to vortex state transition, using a first-order reversal curve (FORC) method. As the nanodot size increases from 52 nm to 67 nm, the FORC diagrams reveal striking differences, despite only subtle changes in their major hysteresis loops. The 52 nm nanodots exhibit single domain behavior and the coercivity distribution extracted from the FORC distribution agrees well with a calculation based on the measured nanodot size distribution. The 58 and 67 nm nanodots exhibit vortex states, where the nucleation and annihilation of the vortices are manifested as butterfly-like features in the FORC distribution and confirmed by micromagnetic simulations. Furthermore, the FORC method gives quantitative measures of the magnetic phase fractions, and vortex nucleation and annihilation fields.
A magnetic skyrmion induced on a ferromagnetic topological insulator (TI) is a real-space manifestation of the chiral spin texture in the momentum space, and can be a carrier for information processing by manipulating it in tailored structures. Here, we fabricate a sandwich structure containing two layers of a self-assembled ferromagnetic septuple-layer TI, Mn(Bi$_{1-x}$Sb$_{x}$)$_{2}$Te$_{4}$ (MnBST), separated by quintuple layers of TI, (Bi$_{1-x}$Sb$_{x}$)$_{2}$Te$_{3}$ (BST), and observe skyrmions through the topological Hall effect in an intrinsic magnetic topological insulator for the first time. The thickness of BST spacer layer is crucial in controlling the coupling between the gapped topological surface states in the two MnBST layers to stabilize the skyrmion formation. The homogeneous, highly-ordered arrangement of the Mn atoms in the septuple-layer MnBST leads to a strong exchange interaction therein, which makes the skyrmions soft magnetic. This would open an avenue towards a topologically robust rewritable magnetic memory.
It is well established that the spin-orbit interaction in heavy metal/ferromagnet heterostructures leads to a significant interfacial Dzyaloshinskii-Moriya Interaction (DMI) that modifies the internal structure of magnetic domain walls (DWs) to favor N{e}el over Bloch type configurations. However, the impact of such a transition on the structure and stability of internal DW defects (e.g., vertical Bloch lines) has not yet been explored. We present a combination of analytical and micromagnetic calculations to describe a new type of topological excitation called a DW Skyrmion characterized by a $360^circ$ rotation of the internal magnetization in a Dzyaloshinskii DW. We further propose a method to identify DW Skyrmions experimentally using Fresnel mode Lorentz TEM; simulated images of DW Skyrmions using this technique are presented based on the micromagnetic results.
Non-collinear magnets exhibit a rich array of dynamic properties at microwave frequencies. They can host nanometre-scale topological textures known as skyrmions, whose spin resonances are expected to be highly sensitive to their local magnetic enviro nment. Here, we report a magnetic resonance study of an [Ir/Fe/Co/Pt] multilayer hosting Neel skyrmions at room temperature. Experiments reveal two distinct resonances of the skyrmion phase during in-plane ac excitation, with frequencies between 6-12 GHz. Complementary micromagnetic simulations indicate that the net magnetic dipole moment rotates counterclockwise (CCW) during both resonances. The magnon probability distribution for the lower-frequency resonance is localised within isolated skyrmions, unlike the higher-frequency mode which principally originates from areas between skyrmions. However, the properties of both modes depend sensitively on the out-of-plane dipolar coupling, which is controlled via the ferromagnetic layer spacing in our heterostructures. The gyrations of stable isolated skyrmions reported in this room temperature study encourage the development of new material platforms and applications based on skyrmion resonances. Moreover, our material architecture enables the resonance spectra to be tuned, thus extending the functionality of such applications over a broadband frequency range.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا